Contract 0xD96877ce3771c0504F0643A98F7646CE2226543f 4

Txn Hash Method
Block
From
To
Value [Txn Fee]
0x185a6ceeaed12b5382cde8ba9272a8183f0f9c430a8666f59faf73ac1000f470Update Underlyin...55372212021-10-12 9:51:41349 days 5 hrs ago0x197939c1ca20c2b506d6811d8b6cdb3394471074 IN  Iron Bank: Flash Loan Lender0 AVAX0.00087352525
0x071d2d92976438d01985a030311263d900f4db9904b14cf149720ea39840ef06Update Underlyin...55350892021-10-12 8:36:25349 days 6 hrs ago0x197939c1ca20c2b506d6811d8b6cdb3394471074 IN  Iron Bank: Flash Loan Lender0 AVAX0.00551082525
0x49208138893ca0d5357fecf5bbed9c2134d93384b5f510aeca81103402fdac0b0x6080604053624762021-10-08 6:42:19353 days 8 hrs ago0x11df15f0c90524d3644843e1a137095373138f5a IN  Create: FlashloanLender0 AVAX0.129996225225
[ Download CSV Export 
Parent Txn Hash Block From To Value
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
FlashloanLender

Compiler Version
v0.5.17+commit.d19bba13

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, BSD-3-Clause license

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 20 : CCollateralCapErc20.sol
pragma solidity ^0.5.16;

import "./CToken.sol";
import "./ERC3156FlashLenderInterface.sol";
import "./ERC3156FlashBorrowerInterface.sol";

/**
 * @title Cream's CCollateralCapErc20 Contract
 * @notice CTokens which wrap an EIP-20 underlying with collateral cap
 * @author Cream
 */
contract CCollateralCapErc20 is CToken, CCollateralCapErc20Interface {
    /**
     * @notice Initialize the new money market
     * @param underlying_ The address of the underlying asset
     * @param comptroller_ The address of the Comptroller
     * @param interestRateModel_ The address of the interest rate model
     * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18
     * @param name_ ERC-20 name of this token
     * @param symbol_ ERC-20 symbol of this token
     * @param decimals_ ERC-20 decimal precision of this token
     */
    function initialize(
        address underlying_,
        ComptrollerInterface comptroller_,
        InterestRateModel interestRateModel_,
        uint256 initialExchangeRateMantissa_,
        string memory name_,
        string memory symbol_,
        uint8 decimals_
    ) public {
        // CToken initialize does the bulk of the work
        super.initialize(comptroller_, interestRateModel_, initialExchangeRateMantissa_, name_, symbol_, decimals_);

        // Set underlying and sanity check it
        underlying = underlying_;
        EIP20Interface(underlying).totalSupply();
    }

    /*** User Interface ***/

    /**
     * @notice Sender supplies assets into the market and receives cTokens in exchange
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param mintAmount The amount of the underlying asset to supply
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function mint(uint256 mintAmount) external returns (uint256) {
        (uint256 err, ) = mintInternal(mintAmount, false);
        return err;
    }

    /**
     * @notice Sender redeems cTokens in exchange for the underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemTokens The number of cTokens to redeem into underlying
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeem(uint256 redeemTokens) external returns (uint256) {
        return redeemInternal(redeemTokens, false);
    }

    /**
     * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemAmount The amount of underlying to redeem
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemUnderlying(uint256 redeemAmount) external returns (uint256) {
        return redeemUnderlyingInternal(redeemAmount, false);
    }

    /**
     * @notice Sender borrows assets from the protocol to their own address
     * @param borrowAmount The amount of the underlying asset to borrow
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function borrow(uint256 borrowAmount) external returns (uint256) {
        return borrowInternal(borrowAmount, false);
    }

    /**
     * @notice Sender repays their own borrow
     * @param repayAmount The amount to repay
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function repayBorrow(uint256 repayAmount) external returns (uint256) {
        (uint256 err, ) = repayBorrowInternal(repayAmount, false);
        return err;
    }

    /**
     * @notice Sender repays a borrow belonging to borrower
     * @param borrower the account with the debt being payed off
     * @param repayAmount The amount to repay
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function repayBorrowBehalf(address borrower, uint256 repayAmount) external returns (uint256) {
        (uint256 err, ) = repayBorrowBehalfInternal(borrower, repayAmount, false);
        return err;
    }

    /**
     * @notice The sender liquidates the borrowers collateral.
     *  The collateral seized is transferred to the liquidator.
     * @param borrower The borrower of this cToken to be liquidated
     * @param repayAmount The amount of the underlying borrowed asset to repay
     * @param cTokenCollateral The market in which to seize collateral from the borrower
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function liquidateBorrow(
        address borrower,
        uint256 repayAmount,
        CTokenInterface cTokenCollateral
    ) external returns (uint256) {
        (uint256 err, ) = liquidateBorrowInternal(borrower, repayAmount, cTokenCollateral, false);
        return err;
    }

    /**
     * @notice The sender adds to reserves.
     * @param addAmount The amount fo underlying token to add as reserves
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _addReserves(uint256 addAmount) external returns (uint256) {
        return _addReservesInternal(addAmount, false);
    }

    /**
     * @notice Set the given collateral cap for the market.
     * @param newCollateralCap New collateral cap for this market. A value of 0 corresponds to no cap.
     */
    function _setCollateralCap(uint256 newCollateralCap) external {
        require(msg.sender == admin, "only admin can set collateral cap");

        collateralCap = newCollateralCap;
        emit NewCollateralCap(address(this), newCollateralCap);
    }

    /**
     * @notice Absorb excess cash into reserves.
     */
    function gulp() external nonReentrant {
        uint256 cashOnChain = getCashOnChain();
        uint256 cashPrior = getCashPrior();

        uint256 excessCash = sub_(cashOnChain, cashPrior);
        totalReserves = add_(totalReserves, excessCash);
        internalCash = cashOnChain;
    }

    /**
     * @notice Get the max flash loan amount
     */
    function maxFlashLoan() external view returns (uint256) {
        uint256 amount = 0;
        if (
            ComptrollerInterfaceExtension(address(comptroller)).flashloanAllowed(address(this), address(0), amount, "")
        ) {
            amount = getCashPrior();
        }
        return amount;
    }

    /**
     * @notice Get the flash loan fees
     * @param amount amount of token to borrow
     */
    function flashFee(uint256 amount) external view returns (uint256) {
        require(
            ComptrollerInterfaceExtension(address(comptroller)).flashloanAllowed(address(this), address(0), amount, ""),
            "flashloan is paused"
        );
        return div_(mul_(amount, flashFeeBips), 10000);
    }

    /**
     * @notice Flash loan funds to a given account.
     * @param receiver The receiver address for the funds
     * @param initiator flash loan initiator
     * @param amount The amount of the funds to be loaned
     * @param data The other data
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function flashLoan(
        ERC3156FlashBorrowerInterface receiver,
        address initiator,
        uint256 amount,
        bytes calldata data
    ) external nonReentrant returns (bool) {
        require(amount > 0, "flashLoan amount should be greater than zero");
        require(accrueInterest() == uint256(Error.NO_ERROR), "accrue interest failed");
        require(
            ComptrollerInterfaceExtension(address(comptroller)).flashloanAllowed(
                address(this),
                address(receiver),
                amount,
                data
            ),
            "flashloan is paused"
        );
        uint256 cashOnChainBefore = getCashOnChain();
        uint256 cashBefore = getCashPrior();
        require(cashBefore >= amount, "INSUFFICIENT_LIQUIDITY");

        // 1. calculate fee, 1 bips = 1/10000
        uint256 totalFee = this.flashFee(amount);

        // 2. transfer fund to receiver
        doTransferOut(address(uint160(address(receiver))), amount, false);

        // 3. update totalBorrows
        totalBorrows = add_(totalBorrows, amount);

        // 4. execute receiver's callback function

        require(
            receiver.onFlashLoan(initiator, underlying, amount, totalFee, data) ==
                keccak256("ERC3156FlashBorrowerInterface.onFlashLoan"),
            "IERC3156: Callback failed"
        );

        // 5. take amount + fee from receiver, then check balance
        uint256 repaymentAmount = add_(amount, totalFee);
        doTransferIn(address(receiver), repaymentAmount, false);

        uint256 cashOnChainAfter = getCashOnChain();

        require(cashOnChainAfter == add_(cashOnChainBefore, totalFee), "BALANCE_INCONSISTENT");

        // 6. update reserves and internal cash and totalBorrows
        uint256 reservesFee = mul_ScalarTruncate(Exp({mantissa: reserveFactorMantissa}), totalFee);
        totalReserves = add_(totalReserves, reservesFee);
        internalCash = add_(cashBefore, totalFee);
        totalBorrows = sub_(totalBorrows, amount);

        emit Flashloan(address(receiver), amount, totalFee, reservesFee);
        return true;
    }

    /**
     * @notice Register account collateral tokens if there is space.
     * @param account The account to register
     * @dev This function could only be called by comptroller.
     * @return The actual registered amount of collateral
     */
    function registerCollateral(address account) external returns (uint256) {
        // Make sure accountCollateralTokens of `account` is initialized.
        initializeAccountCollateralTokens(account);

        require(msg.sender == address(comptroller), "only comptroller may register collateral for user");

        uint256 amount = sub_(accountTokens[account], accountCollateralTokens[account]);
        return increaseUserCollateralInternal(account, amount);
    }

    /**
     * @notice Unregister account collateral tokens if the account still has enough collateral.
     * @dev This function could only be called by comptroller.
     * @param account The account to unregister
     */
    function unregisterCollateral(address account) external {
        // Make sure accountCollateralTokens of `account` is initialized.
        initializeAccountCollateralTokens(account);

        require(msg.sender == address(comptroller), "only comptroller may unregister collateral for user");
        require(
            comptroller.redeemAllowed(address(this), account, accountCollateralTokens[account]) == 0,
            "comptroller rejection"
        );

        decreaseUserCollateralInternal(account, accountCollateralTokens[account]);
    }

    /*** Safe Token ***/

    /**
     * @notice Gets internal balance of this contract in terms of the underlying.
     *  It excludes balance from direct transfer.
     * @dev This excludes the value of the current message, if any
     * @return The quantity of underlying tokens owned by this contract
     */
    function getCashPrior() internal view returns (uint256) {
        return internalCash;
    }

    /**
     * @notice Gets total balance of this contract in terms of the underlying
     * @dev This excludes the value of the current message, if any
     * @return The quantity of underlying tokens owned by this contract
     */
    function getCashOnChain() internal view returns (uint256) {
        EIP20Interface token = EIP20Interface(underlying);
        return token.balanceOf(address(this));
    }

    /**
     * @notice Initialize the account's collateral tokens. This function should be called in the beginning of every function
     *  that accesses accountCollateralTokens or accountTokens.
     * @param account The account of accountCollateralTokens that needs to be updated
     */
    function initializeAccountCollateralTokens(address account) internal {
        /**
         * If isCollateralTokenInit is false, it means accountCollateralTokens was not initialized yet.
         * This case will only happen once and must be the very beginning. accountCollateralTokens is a new structure and its
         * initial value should be equal to accountTokens if user has entered the market. However, it's almost impossible to
         * check every user's value when the implementation becomes active. Therefore, it must rely on every action which will
         * access accountTokens to call this function to check if accountCollateralTokens needed to be initialized.
         */
        if (!isCollateralTokenInit[account]) {
            if (ComptrollerInterfaceExtension(address(comptroller)).checkMembership(account, CToken(this))) {
                accountCollateralTokens[account] = accountTokens[account];
                totalCollateralTokens = add_(totalCollateralTokens, accountTokens[account]);

                emit UserCollateralChanged(account, accountCollateralTokens[account]);
            }
            isCollateralTokenInit[account] = true;
        }
    }

    /**
     * @dev Similar to EIP20 transfer, except it handles a False result from `transferFrom` and reverts in that case.
     *      This will revert due to insufficient balance or insufficient allowance.
     *      This function returns the actual amount received,
     *      which may be less than `amount` if there is a fee attached to the transfer.
     *
     *      Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.
     *            See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
     */
    function doTransferIn(
        address from,
        uint256 amount,
        bool isNative
    ) internal returns (uint256) {
        isNative; // unused

        EIP20NonStandardInterface token = EIP20NonStandardInterface(underlying);
        uint256 balanceBefore = EIP20Interface(underlying).balanceOf(address(this));
        token.transferFrom(from, address(this), amount);

        bool success;
        assembly {
            switch returndatasize()
            case 0 {
                // This is a non-standard ERC-20
                success := not(0) // set success to true
            }
            case 32 {
                // This is a compliant ERC-20
                returndatacopy(0, 0, 32)
                success := mload(0) // Set `success = returndata` of external call
            }
            default {
                // This is an excessively non-compliant ERC-20, revert.
                revert(0, 0)
            }
        }
        require(success, "TOKEN_TRANSFER_IN_FAILED");

        // Calculate the amount that was *actually* transferred
        uint256 balanceAfter = EIP20Interface(underlying).balanceOf(address(this));
        uint256 transferredIn = sub_(balanceAfter, balanceBefore);
        internalCash = add_(internalCash, transferredIn);
        return transferredIn;
    }

    /**
     * @dev Similar to EIP20 transfer, except it handles a False success from `transfer` and returns an explanatory
     *      error code rather than reverting. If caller has not called checked protocol's balance, this may revert due to
     *      insufficient cash held in this contract. If caller has checked protocol's balance prior to this call, and verified
     *      it is >= amount, this should not revert in normal conditions.
     *
     *      Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.
     *            See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
     */
    function doTransferOut(
        address payable to,
        uint256 amount,
        bool isNative
    ) internal {
        isNative; // unused

        EIP20NonStandardInterface token = EIP20NonStandardInterface(underlying);
        token.transfer(to, amount);

        bool success;
        assembly {
            switch returndatasize()
            case 0 {
                // This is a non-standard ERC-20
                success := not(0) // set success to true
            }
            case 32 {
                // This is a complaint ERC-20
                returndatacopy(0, 0, 32)
                success := mload(0) // Set `success = returndata` of external call
            }
            default {
                // This is an excessively non-compliant ERC-20, revert.
                revert(0, 0)
            }
        }
        require(success, "TOKEN_TRANSFER_OUT_FAILED");
        internalCash = sub_(internalCash, amount);
    }

    /**
     * @notice Transfer `tokens` tokens from `src` to `dst` by `spender`
     * @dev Called by both `transfer` and `transferFrom` internally
     * @param spender The address of the account performing the transfer
     * @param src The address of the source account
     * @param dst The address of the destination account
     * @param tokens The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transferTokens(
        address spender,
        address src,
        address dst,
        uint256 tokens
    ) internal returns (uint256) {
        // Make sure accountCollateralTokens of `src` and `dst` are initialized.
        initializeAccountCollateralTokens(src);
        initializeAccountCollateralTokens(dst);

        /**
         * For every user, accountTokens must be greater than or equal to accountCollateralTokens.
         * The buffer between the two values will be transferred first.
         * bufferTokens = accountTokens[src] - accountCollateralTokens[src]
         * collateralTokens = tokens - bufferTokens
         */
        uint256 bufferTokens = sub_(accountTokens[src], accountCollateralTokens[src]);
        uint256 collateralTokens = 0;
        if (tokens > bufferTokens) {
            collateralTokens = tokens - bufferTokens;
        }

        /**
         * Since bufferTokens are not collateralized and can be transferred freely, we only check with comptroller
         * whether collateralized tokens can be transferred.
         */
        uint256 allowed = comptroller.transferAllowed(address(this), src, dst, collateralTokens);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.TRANSFER_COMPTROLLER_REJECTION, allowed);
        }

        /* Do not allow self-transfers */
        if (src == dst) {
            return fail(Error.BAD_INPUT, FailureInfo.TRANSFER_NOT_ALLOWED);
        }

        /* Get the allowance, infinite for the account owner */
        uint256 startingAllowance = 0;
        if (spender == src) {
            startingAllowance = uint256(-1);
        } else {
            startingAllowance = transferAllowances[src][spender];
        }

        /* Do the calculations, checking for {under,over}flow */
        accountTokens[src] = sub_(accountTokens[src], tokens);
        accountTokens[dst] = add_(accountTokens[dst], tokens);
        if (collateralTokens > 0) {
            accountCollateralTokens[src] = sub_(accountCollateralTokens[src], collateralTokens);
            accountCollateralTokens[dst] = add_(accountCollateralTokens[dst], collateralTokens);

            emit UserCollateralChanged(src, accountCollateralTokens[src]);
            emit UserCollateralChanged(dst, accountCollateralTokens[dst]);
        }

        /* Eat some of the allowance (if necessary) */
        if (startingAllowance != uint256(-1)) {
            transferAllowances[src][spender] = sub_(startingAllowance, tokens);
        }

        /* We emit a Transfer event */
        emit Transfer(src, dst, tokens);

        comptroller.transferVerify(address(this), src, dst, tokens);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Get the account's cToken balances
     * @param account The address of the account
     */
    function getCTokenBalanceInternal(address account) internal view returns (uint256) {
        if (isCollateralTokenInit[account]) {
            return accountCollateralTokens[account];
        } else {
            /**
             * If the value of accountCollateralTokens was not initialized, we should return the value of accountTokens.
             */
            return accountTokens[account];
        }
    }

    /**
     * @notice Increase user's collateral. Increase as much as we can.
     * @param account The address of the account
     * @param amount The amount of collateral user wants to increase
     * @return The actual increased amount of collateral
     */
    function increaseUserCollateralInternal(address account, uint256 amount) internal returns (uint256) {
        uint256 totalCollateralTokensNew = add_(totalCollateralTokens, amount);
        if (collateralCap == 0 || (collateralCap != 0 && totalCollateralTokensNew <= collateralCap)) {
            // 1. If collateral cap is not set,
            // 2. If collateral cap is set but has enough space for this user,
            // give all the user needs.
            totalCollateralTokens = totalCollateralTokensNew;
            accountCollateralTokens[account] = add_(accountCollateralTokens[account], amount);

            emit UserCollateralChanged(account, accountCollateralTokens[account]);
            return amount;
        } else if (collateralCap > totalCollateralTokens) {
            // If the collateral cap is set but the remaining cap is not enough for this user,
            // give the remaining parts to the user.
            uint256 gap = sub_(collateralCap, totalCollateralTokens);
            totalCollateralTokens = add_(totalCollateralTokens, gap);
            accountCollateralTokens[account] = add_(accountCollateralTokens[account], gap);

            emit UserCollateralChanged(account, accountCollateralTokens[account]);
            return gap;
        }
        return 0;
    }

    /**
     * @notice Decrease user's collateral. Reject if the amount can't be fully decrease.
     * @param account The address of the account
     * @param amount The amount of collateral user wants to decrease
     */
    function decreaseUserCollateralInternal(address account, uint256 amount) internal {
        /*
         * Return if amount is zero.
         * Put behind `redeemAllowed` for accuring potential COMP rewards.
         */
        if (amount == 0) {
            return;
        }

        totalCollateralTokens = sub_(totalCollateralTokens, amount);
        accountCollateralTokens[account] = sub_(accountCollateralTokens[account], amount);

        emit UserCollateralChanged(account, accountCollateralTokens[account]);
    }

    struct MintLocalVars {
        uint256 exchangeRateMantissa;
        uint256 mintTokens;
        uint256 actualMintAmount;
    }

    /**
     * @notice User supplies assets into the market and receives cTokens in exchange
     * @dev Assumes interest has already been accrued up to the current block
     * @param minter The address of the account which is supplying the assets
     * @param mintAmount The amount of the underlying asset to supply
     * @param isNative The amount is in native or not
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
     */
    function mintFresh(
        address minter,
        uint256 mintAmount,
        bool isNative
    ) internal returns (uint256, uint256) {
        // Make sure accountCollateralTokens of `minter` is initialized.
        initializeAccountCollateralTokens(minter);

        /* Fail if mint not allowed */
        uint256 allowed = comptroller.mintAllowed(address(this), minter, mintAmount);
        if (allowed != 0) {
            return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed), 0);
        }

        /*
         * Return if mintAmount is zero.
         * Put behind `mintAllowed` for accuring potential COMP rewards.
         */
        if (mintAmount == 0) {
            return (uint256(Error.NO_ERROR), 0);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return (fail(Error.MARKET_NOT_FRESH, FailureInfo.MINT_FRESHNESS_CHECK), 0);
        }

        MintLocalVars memory vars;

        vars.exchangeRateMantissa = exchangeRateStoredInternal();

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /*
         *  We call `doTransferIn` for the minter and the mintAmount.
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  `doTransferIn` reverts if anything goes wrong, since we can't be sure if
         *  side-effects occurred. The function returns the amount actually transferred,
         *  in case of a fee. On success, the cToken holds an additional `actualMintAmount`
         *  of cash.
         */
        vars.actualMintAmount = doTransferIn(minter, mintAmount, isNative);

        /*
         * We get the current exchange rate and calculate the number of cTokens to be minted:
         *  mintTokens = actualMintAmount / exchangeRate
         */
        vars.mintTokens = div_ScalarByExpTruncate(vars.actualMintAmount, Exp({mantissa: vars.exchangeRateMantissa}));

        /*
         * We calculate the new total supply of cTokens and minter token balance, checking for overflow:
         *  totalSupply = totalSupply + mintTokens
         *  accountTokens[minter] = accountTokens[minter] + mintTokens
         */
        totalSupply = add_(totalSupply, vars.mintTokens);
        accountTokens[minter] = add_(accountTokens[minter], vars.mintTokens);

        /*
         * We only allocate collateral tokens if the minter has entered the market.
         */
        if (ComptrollerInterfaceExtension(address(comptroller)).checkMembership(minter, CToken(this))) {
            increaseUserCollateralInternal(minter, vars.mintTokens);
        }

        /* We emit a Mint event, and a Transfer event */
        emit Mint(minter, vars.actualMintAmount, vars.mintTokens);
        emit Transfer(address(this), minter, vars.mintTokens);

        /* We call the defense hook */
        comptroller.mintVerify(address(this), minter, vars.actualMintAmount, vars.mintTokens);

        return (uint256(Error.NO_ERROR), vars.actualMintAmount);
    }

    struct RedeemLocalVars {
        uint256 exchangeRateMantissa;
        uint256 redeemTokens;
        uint256 redeemAmount;
    }

    /**
     * @notice User redeems cTokens in exchange for the underlying asset
     * @dev Assumes interest has already been accrued up to the current block. Only one of redeemTokensIn or redeemAmountIn may be non-zero and it would do nothing if both are zero.
     * @param redeemer The address of the account which is redeeming the tokens
     * @param redeemTokensIn The number of cTokens to redeem into underlying
     * @param redeemAmountIn The number of underlying tokens to receive from redeeming cTokens
     * @param isNative The amount is in native or not
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemFresh(
        address payable redeemer,
        uint256 redeemTokensIn,
        uint256 redeemAmountIn,
        bool isNative
    ) internal returns (uint256) {
        // Make sure accountCollateralTokens of `redeemer` is initialized.
        initializeAccountCollateralTokens(redeemer);

        require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero");

        RedeemLocalVars memory vars;

        /* exchangeRate = invoke Exchange Rate Stored() */
        vars.exchangeRateMantissa = exchangeRateStoredInternal();

        /* If redeemTokensIn > 0: */
        if (redeemTokensIn > 0) {
            /*
             * We calculate the exchange rate and the amount of underlying to be redeemed:
             *  redeemTokens = redeemTokensIn
             *  redeemAmount = redeemTokensIn x exchangeRateCurrent
             */
            vars.redeemTokens = redeemTokensIn;
            vars.redeemAmount = mul_ScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn);
        } else {
            /*
             * We get the current exchange rate and calculate the amount to be redeemed:
             *  redeemTokens = redeemAmountIn / exchangeRate
             *  redeemAmount = redeemAmountIn
             */
            vars.redeemTokens = div_ScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa}));
            vars.redeemAmount = redeemAmountIn;
        }

        /**
         * For every user, accountTokens must be greater than or equal to accountCollateralTokens.
         * The buffer between the two values will be redeemed first.
         * bufferTokens = accountTokens[redeemer] - accountCollateralTokens[redeemer]
         * collateralTokens = redeemTokens - bufferTokens
         */
        uint256 bufferTokens = sub_(accountTokens[redeemer], accountCollateralTokens[redeemer]);
        uint256 collateralTokens = 0;
        if (vars.redeemTokens > bufferTokens) {
            collateralTokens = vars.redeemTokens - bufferTokens;
        }

        if (collateralTokens > 0) {
            require(comptroller.redeemAllowed(address(this), redeemer, collateralTokens) == 0, "comptroller rejection");
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDEEM_FRESHNESS_CHECK);
        }

        /* Fail gracefully if protocol has insufficient cash */
        if (getCashPrior() < vars.redeemAmount) {
            return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDEEM_TRANSFER_OUT_NOT_POSSIBLE);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /*
         * We calculate the new total supply and redeemer balance, checking for underflow:
         *  totalSupplyNew = totalSupply - redeemTokens
         *  accountTokensNew = accountTokens[redeemer] - redeemTokens
         */
        totalSupply = sub_(totalSupply, vars.redeemTokens);
        accountTokens[redeemer] = sub_(accountTokens[redeemer], vars.redeemTokens);

        /*
         * We only deallocate collateral tokens if the redeemer needs to redeem them.
         */
        decreaseUserCollateralInternal(redeemer, collateralTokens);

        /*
         * We invoke doTransferOut for the redeemer and the redeemAmount.
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  On success, the cToken has redeemAmount less of cash.
         *  doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
         */
        doTransferOut(redeemer, vars.redeemAmount, isNative);

        /* We emit a Transfer event, and a Redeem event */
        emit Transfer(redeemer, address(this), vars.redeemTokens);
        emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens);

        /* We call the defense hook */
        comptroller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Transfers collateral tokens (this market) to the liquidator.
     * @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken.
     *  Its absolutely critical to use msg.sender as the seizer cToken and not a parameter.
     * @param seizerToken The contract seizing the collateral (i.e. borrowed cToken)
     * @param liquidator The account receiving seized collateral
     * @param borrower The account having collateral seized
     * @param seizeTokens The number of cTokens to seize
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function seizeInternal(
        address seizerToken,
        address liquidator,
        address borrower,
        uint256 seizeTokens
    ) internal returns (uint256) {
        // Make sure accountCollateralTokens of `liquidator` and `borrower` are initialized.
        initializeAccountCollateralTokens(liquidator);
        initializeAccountCollateralTokens(borrower);

        /* Fail if seize not allowed */
        uint256 allowed = comptroller.seizeAllowed(address(this), seizerToken, liquidator, borrower, seizeTokens);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, allowed);
        }

        /*
         * Return if seizeTokens is zero.
         * Put behind `seizeAllowed` for accuring potential COMP rewards.
         */
        if (seizeTokens == 0) {
            return uint256(Error.NO_ERROR);
        }

        /* Fail if borrower = liquidator */
        if (borrower == liquidator) {
            return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER);
        }

        /*
         * We calculate the new borrower and liquidator token balances and token collateral balances, failing on underflow/overflow:
         *  accountTokens[borrower] = accountTokens[borrower] - seizeTokens
         *  accountTokens[liquidator] = accountTokens[liquidator] + seizeTokens
         *  accountCollateralTokens[borrower] = accountCollateralTokens[borrower] - seizeTokens
         *  accountCollateralTokens[liquidator] = accountCollateralTokens[liquidator] + seizeTokens
         */
        accountTokens[borrower] = sub_(accountTokens[borrower], seizeTokens);
        accountTokens[liquidator] = add_(accountTokens[liquidator], seizeTokens);
        accountCollateralTokens[borrower] = sub_(accountCollateralTokens[borrower], seizeTokens);
        accountCollateralTokens[liquidator] = add_(accountCollateralTokens[liquidator], seizeTokens);

        /* Emit a Transfer, UserCollateralChanged events */
        emit Transfer(borrower, liquidator, seizeTokens);
        emit UserCollateralChanged(borrower, accountCollateralTokens[borrower]);
        emit UserCollateralChanged(liquidator, accountCollateralTokens[liquidator]);

        /* We call the defense hook */
        comptroller.seizeVerify(address(this), seizerToken, liquidator, borrower, seizeTokens);

        return uint256(Error.NO_ERROR);
    }
}

File 2 of 20 : CErc20.sol
pragma solidity ^0.5.16;

import "./CToken.sol";

/**
 * @title Compound's CErc20 Contract
 * @notice CTokens which wrap an EIP-20 underlying
 * @author Compound
 */
contract CErc20 is CToken, CErc20Interface {
    /**
     * @notice Initialize the new money market
     * @param underlying_ The address of the underlying asset
     * @param comptroller_ The address of the Comptroller
     * @param interestRateModel_ The address of the interest rate model
     * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18
     * @param name_ ERC-20 name of this token
     * @param symbol_ ERC-20 symbol of this token
     * @param decimals_ ERC-20 decimal precision of this token
     */
    function initialize(
        address underlying_,
        ComptrollerInterface comptroller_,
        InterestRateModel interestRateModel_,
        uint256 initialExchangeRateMantissa_,
        string memory name_,
        string memory symbol_,
        uint8 decimals_
    ) public {
        // CToken initialize does the bulk of the work
        super.initialize(comptroller_, interestRateModel_, initialExchangeRateMantissa_, name_, symbol_, decimals_);

        // Set underlying and sanity check it
        underlying = underlying_;
        EIP20Interface(underlying).totalSupply();
    }

    /*** User Interface ***/

    /**
     * @notice Sender supplies assets into the market and receives cTokens in exchange
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param mintAmount The amount of the underlying asset to supply
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function mint(uint256 mintAmount) external returns (uint256) {
        (uint256 err, ) = mintInternal(mintAmount, false);
        return err;
    }

    /**
     * @notice Sender redeems cTokens in exchange for the underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemTokens The number of cTokens to redeem into underlying
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeem(uint256 redeemTokens) external returns (uint256) {
        return redeemInternal(redeemTokens, false);
    }

    /**
     * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemAmount The amount of underlying to redeem
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemUnderlying(uint256 redeemAmount) external returns (uint256) {
        return redeemUnderlyingInternal(redeemAmount, false);
    }

    /**
     * @notice Sender borrows assets from the protocol to their own address
     * @param borrowAmount The amount of the underlying asset to borrow
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function borrow(uint256 borrowAmount) external returns (uint256) {
        return borrowInternal(borrowAmount, false);
    }

    /**
     * @notice Sender repays their own borrow
     * @param repayAmount The amount to repay
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function repayBorrow(uint256 repayAmount) external returns (uint256) {
        (uint256 err, ) = repayBorrowInternal(repayAmount, false);
        return err;
    }

    /**
     * @notice Sender repays a borrow belonging to borrower
     * @param borrower the account with the debt being payed off
     * @param repayAmount The amount to repay
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function repayBorrowBehalf(address borrower, uint256 repayAmount) external returns (uint256) {
        (uint256 err, ) = repayBorrowBehalfInternal(borrower, repayAmount, false);
        return err;
    }

    /**
     * @notice The sender liquidates the borrowers collateral.
     *  The collateral seized is transferred to the liquidator.
     * @param borrower The borrower of this cToken to be liquidated
     * @param repayAmount The amount of the underlying borrowed asset to repay
     * @param cTokenCollateral The market in which to seize collateral from the borrower
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function liquidateBorrow(
        address borrower,
        uint256 repayAmount,
        CTokenInterface cTokenCollateral
    ) external returns (uint256) {
        (uint256 err, ) = liquidateBorrowInternal(borrower, repayAmount, cTokenCollateral, false);
        return err;
    }

    /**
     * @notice The sender adds to reserves.
     * @param addAmount The amount fo underlying token to add as reserves
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _addReserves(uint256 addAmount) external returns (uint256) {
        return _addReservesInternal(addAmount, false);
    }

    /*** Safe Token ***/

    /**
     * @notice Gets balance of this contract in terms of the underlying
     * @dev This excludes the value of the current message, if any
     * @return The quantity of underlying tokens owned by this contract
     */
    function getCashPrior() internal view returns (uint256) {
        EIP20Interface token = EIP20Interface(underlying);
        return token.balanceOf(address(this));
    }

    /**
     * @dev Similar to EIP20 transfer, except it handles a False result from `transferFrom` and reverts in that case.
     *      This will revert due to insufficient balance or insufficient allowance.
     *      This function returns the actual amount received,
     *      which may be less than `amount` if there is a fee attached to the transfer.
     *
     *      Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.
     *            See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
     */
    function doTransferIn(
        address from,
        uint256 amount,
        bool isNative
    ) internal returns (uint256) {
        isNative; // unused

        EIP20NonStandardInterface token = EIP20NonStandardInterface(underlying);
        uint256 balanceBefore = EIP20Interface(underlying).balanceOf(address(this));
        token.transferFrom(from, address(this), amount);

        bool success;
        assembly {
            switch returndatasize()
            case 0 {
                // This is a non-standard ERC-20
                success := not(0) // set success to true
            }
            case 32 {
                // This is a compliant ERC-20
                returndatacopy(0, 0, 32)
                success := mload(0) // Set `success = returndata` of external call
            }
            default {
                // This is an excessively non-compliant ERC-20, revert.
                revert(0, 0)
            }
        }
        require(success, "TOKEN_TRANSFER_IN_FAILED");

        // Calculate the amount that was *actually* transferred
        uint256 balanceAfter = EIP20Interface(underlying).balanceOf(address(this));
        return sub_(balanceAfter, balanceBefore);
    }

    /**
     * @dev Similar to EIP20 transfer, except it handles a False success from `transfer` and returns an explanatory
     *      error code rather than reverting. If caller has not called checked protocol's balance, this may revert due to
     *      insufficient cash held in this contract. If caller has checked protocol's balance prior to this call, and verified
     *      it is >= amount, this should not revert in normal conditions.
     *
     *      Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.
     *            See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
     */
    function doTransferOut(
        address payable to,
        uint256 amount,
        bool isNative
    ) internal {
        isNative; // unused

        EIP20NonStandardInterface token = EIP20NonStandardInterface(underlying);
        token.transfer(to, amount);

        bool success;
        assembly {
            switch returndatasize()
            case 0 {
                // This is a non-standard ERC-20
                success := not(0) // set success to true
            }
            case 32 {
                // This is a complaint ERC-20
                returndatacopy(0, 0, 32)
                success := mload(0) // Set `success = returndata` of external call
            }
            default {
                // This is an excessively non-compliant ERC-20, revert.
                revert(0, 0)
            }
        }
        require(success, "TOKEN_TRANSFER_OUT_FAILED");
    }

    /**
     * @notice Transfer `tokens` tokens from `src` to `dst` by `spender`
     * @dev Called by both `transfer` and `transferFrom` internally
     * @param spender The address of the account performing the transfer
     * @param src The address of the source account
     * @param dst The address of the destination account
     * @param tokens The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transferTokens(
        address spender,
        address src,
        address dst,
        uint256 tokens
    ) internal returns (uint256) {
        /* Fail if transfer not allowed */
        uint256 allowed = comptroller.transferAllowed(address(this), src, dst, tokens);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.TRANSFER_COMPTROLLER_REJECTION, allowed);
        }

        /* Do not allow self-transfers */
        if (src == dst) {
            return fail(Error.BAD_INPUT, FailureInfo.TRANSFER_NOT_ALLOWED);
        }

        /* Get the allowance, infinite for the account owner */
        uint256 startingAllowance = 0;
        if (spender == src) {
            startingAllowance = uint256(-1);
        } else {
            startingAllowance = transferAllowances[src][spender];
        }

        /* Do the calculations, checking for {under,over}flow */
        accountTokens[src] = sub_(accountTokens[src], tokens);
        accountTokens[dst] = add_(accountTokens[dst], tokens);

        /* Eat some of the allowance (if necessary) */
        if (startingAllowance != uint256(-1)) {
            transferAllowances[src][spender] = sub_(startingAllowance, tokens);
        }

        /* We emit a Transfer event */
        emit Transfer(src, dst, tokens);

        comptroller.transferVerify(address(this), src, dst, tokens);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Get the account's cToken balances
     * @param account The address of the account
     */
    function getCTokenBalanceInternal(address account) internal view returns (uint256) {
        return accountTokens[account];
    }

    struct MintLocalVars {
        uint256 exchangeRateMantissa;
        uint256 mintTokens;
        uint256 actualMintAmount;
    }

    /**
     * @notice User supplies assets into the market and receives cTokens in exchange
     * @dev Assumes interest has already been accrued up to the current block
     * @param minter The address of the account which is supplying the assets
     * @param mintAmount The amount of the underlying asset to supply
     * @param isNative The amount is in native or not
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
     */
    function mintFresh(
        address minter,
        uint256 mintAmount,
        bool isNative
    ) internal returns (uint256, uint256) {
        /* Fail if mint not allowed */
        uint256 allowed = comptroller.mintAllowed(address(this), minter, mintAmount);
        if (allowed != 0) {
            return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed), 0);
        }

        /*
         * Return if mintAmount is zero.
         * Put behind `mintAllowed` for accuring potential COMP rewards.
         */
        if (mintAmount == 0) {
            return (uint256(Error.NO_ERROR), 0);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return (fail(Error.MARKET_NOT_FRESH, FailureInfo.MINT_FRESHNESS_CHECK), 0);
        }

        MintLocalVars memory vars;

        vars.exchangeRateMantissa = exchangeRateStoredInternal();

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /*
         *  We call `doTransferIn` for the minter and the mintAmount.
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  `doTransferIn` reverts if anything goes wrong, since we can't be sure if
         *  side-effects occurred. The function returns the amount actually transferred,
         *  in case of a fee. On success, the cToken holds an additional `actualMintAmount`
         *  of cash.
         */
        vars.actualMintAmount = doTransferIn(minter, mintAmount, isNative);

        /*
         * We get the current exchange rate and calculate the number of cTokens to be minted:
         *  mintTokens = actualMintAmount / exchangeRate
         */
        vars.mintTokens = div_ScalarByExpTruncate(vars.actualMintAmount, Exp({mantissa: vars.exchangeRateMantissa}));

        /*
         * We calculate the new total supply of cTokens and minter token balance, checking for overflow:
         *  totalSupply = totalSupply + mintTokens
         *  accountTokens[minter] = accountTokens[minter] + mintTokens
         */
        totalSupply = add_(totalSupply, vars.mintTokens);
        accountTokens[minter] = add_(accountTokens[minter], vars.mintTokens);

        /* We emit a Mint event, and a Transfer event */
        emit Mint(minter, vars.actualMintAmount, vars.mintTokens);
        emit Transfer(address(this), minter, vars.mintTokens);

        /* We call the defense hook */
        comptroller.mintVerify(address(this), minter, vars.actualMintAmount, vars.mintTokens);

        return (uint256(Error.NO_ERROR), vars.actualMintAmount);
    }

    struct RedeemLocalVars {
        uint256 exchangeRateMantissa;
        uint256 redeemTokens;
        uint256 redeemAmount;
        uint256 totalSupplyNew;
        uint256 accountTokensNew;
    }

    /**
     * @notice User redeems cTokens in exchange for the underlying asset
     * @dev Assumes interest has already been accrued up to the current block. Only one of redeemTokensIn or redeemAmountIn may be non-zero and it would do nothing if both are zero.
     * @param redeemer The address of the account which is redeeming the tokens
     * @param redeemTokensIn The number of cTokens to redeem into underlying
     * @param redeemAmountIn The number of underlying tokens to receive from redeeming cTokens
     * @param isNative The amount is in native or not
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemFresh(
        address payable redeemer,
        uint256 redeemTokensIn,
        uint256 redeemAmountIn,
        bool isNative
    ) internal returns (uint256) {
        require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero");

        RedeemLocalVars memory vars;

        /* exchangeRate = invoke Exchange Rate Stored() */
        vars.exchangeRateMantissa = exchangeRateStoredInternal();

        /* If redeemTokensIn > 0: */
        if (redeemTokensIn > 0) {
            /*
             * We calculate the exchange rate and the amount of underlying to be redeemed:
             *  redeemTokens = redeemTokensIn
             *  redeemAmount = redeemTokensIn x exchangeRateCurrent
             */
            vars.redeemTokens = redeemTokensIn;
            vars.redeemAmount = mul_ScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn);
        } else {
            /*
             * We get the current exchange rate and calculate the amount to be redeemed:
             *  redeemTokens = redeemAmountIn / exchangeRate
             *  redeemAmount = redeemAmountIn
             */
            vars.redeemTokens = div_ScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa}));
            vars.redeemAmount = redeemAmountIn;
        }

        /* Fail if redeem not allowed */
        uint256 allowed = comptroller.redeemAllowed(address(this), redeemer, vars.redeemTokens);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REDEEM_COMPTROLLER_REJECTION, allowed);
        }

        /*
         * Return if redeemTokensIn and redeemAmountIn are zero.
         * Put behind `redeemAllowed` for accuring potential COMP rewards.
         */
        if (redeemTokensIn == 0 && redeemAmountIn == 0) {
            return uint256(Error.NO_ERROR);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDEEM_FRESHNESS_CHECK);
        }

        /*
         * We calculate the new total supply and redeemer balance, checking for underflow:
         *  totalSupplyNew = totalSupply - redeemTokens
         *  accountTokensNew = accountTokens[redeemer] - redeemTokens
         */
        vars.totalSupplyNew = sub_(totalSupply, vars.redeemTokens);
        vars.accountTokensNew = sub_(accountTokens[redeemer], vars.redeemTokens);

        /* Fail gracefully if protocol has insufficient cash */
        if (getCashPrior() < vars.redeemAmount) {
            return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDEEM_TRANSFER_OUT_NOT_POSSIBLE);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /* We write previously calculated values into storage */
        totalSupply = vars.totalSupplyNew;
        accountTokens[redeemer] = vars.accountTokensNew;

        /*
         * We invoke doTransferOut for the redeemer and the redeemAmount.
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  On success, the cToken has redeemAmount less of cash.
         *  doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
         */
        doTransferOut(redeemer, vars.redeemAmount, isNative);

        /* We emit a Transfer event, and a Redeem event */
        emit Transfer(redeemer, address(this), vars.redeemTokens);
        emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens);

        /* We call the defense hook */
        comptroller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Transfers collateral tokens (this market) to the liquidator.
     * @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken.
     *  Its absolutely critical to use msg.sender as the seizer cToken and not a parameter.
     * @param seizerToken The contract seizing the collateral (i.e. borrowed cToken)
     * @param liquidator The account receiving seized collateral
     * @param borrower The account having collateral seized
     * @param seizeTokens The number of cTokens to seize
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function seizeInternal(
        address seizerToken,
        address liquidator,
        address borrower,
        uint256 seizeTokens
    ) internal returns (uint256) {
        /* Fail if seize not allowed */
        uint256 allowed = comptroller.seizeAllowed(address(this), seizerToken, liquidator, borrower, seizeTokens);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, allowed);
        }

        /*
         * Return if seizeTokens is zero.
         * Put behind `seizeAllowed` for accuring potential COMP rewards.
         */
        if (seizeTokens == 0) {
            return uint256(Error.NO_ERROR);
        }

        /* Fail if borrower = liquidator */
        if (borrower == liquidator) {
            return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER);
        }

        /*
         * We calculate the new borrower and liquidator token balances, failing on underflow/overflow:
         *  borrowerTokensNew = accountTokens[borrower] - seizeTokens
         *  liquidatorTokensNew = accountTokens[liquidator] + seizeTokens
         */
        accountTokens[borrower] = sub_(accountTokens[borrower], seizeTokens);
        accountTokens[liquidator] = add_(accountTokens[liquidator], seizeTokens);

        /* Emit a Transfer event */
        emit Transfer(borrower, liquidator, seizeTokens);

        /* We call the defense hook */
        comptroller.seizeVerify(address(this), seizerToken, liquidator, borrower, seizeTokens);

        return uint256(Error.NO_ERROR);
    }
}

File 3 of 20 : CToken.sol
pragma solidity ^0.5.16;

import "./ComptrollerInterface.sol";
import "./CTokenInterfaces.sol";
import "./ErrorReporter.sol";
import "./Exponential.sol";
import "./EIP20Interface.sol";
import "./EIP20NonStandardInterface.sol";
import "./InterestRateModel.sol";

/**
 * @title Compound's CToken Contract
 * @notice Abstract base for CTokens
 * @author Compound
 */
contract CToken is CTokenInterface, Exponential, TokenErrorReporter {
    /**
     * @notice Initialize the money market
     * @param comptroller_ The address of the Comptroller
     * @param interestRateModel_ The address of the interest rate model
     * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18
     * @param name_ EIP-20 name of this token
     * @param symbol_ EIP-20 symbol of this token
     * @param decimals_ EIP-20 decimal precision of this token
     */
    function initialize(
        ComptrollerInterface comptroller_,
        InterestRateModel interestRateModel_,
        uint256 initialExchangeRateMantissa_,
        string memory name_,
        string memory symbol_,
        uint8 decimals_
    ) public {
        require(msg.sender == admin, "only admin may initialize the market");
        require(accrualBlockNumber == 0 && borrowIndex == 0, "market may only be initialized once");

        // Set initial exchange rate
        initialExchangeRateMantissa = initialExchangeRateMantissa_;
        require(initialExchangeRateMantissa > 0, "initial exchange rate must be greater than zero.");

        // Set the comptroller
        uint256 err = _setComptroller(comptroller_);
        require(err == uint256(Error.NO_ERROR), "setting comptroller failed");

        // Initialize block number and borrow index (block number mocks depend on comptroller being set)
        accrualBlockNumber = getBlockNumber();
        borrowIndex = mantissaOne;

        // Set the interest rate model (depends on block number / borrow index)
        err = _setInterestRateModelFresh(interestRateModel_);
        require(err == uint256(Error.NO_ERROR), "setting interest rate model failed");

        name = name_;
        symbol = symbol_;
        decimals = decimals_;

        // The counter starts true to prevent changing it from zero to non-zero (i.e. smaller cost/refund)
        _notEntered = true;
    }

    /**
     * @notice Transfer `amount` tokens from `msg.sender` to `dst`
     * @param dst The address of the destination account
     * @param amount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transfer(address dst, uint256 amount) external nonReentrant returns (bool) {
        return transferTokens(msg.sender, msg.sender, dst, amount) == uint256(Error.NO_ERROR);
    }

    /**
     * @notice Transfer `amount` tokens from `src` to `dst`
     * @param src The address of the source account
     * @param dst The address of the destination account
     * @param amount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transferFrom(
        address src,
        address dst,
        uint256 amount
    ) external nonReentrant returns (bool) {
        return transferTokens(msg.sender, src, dst, amount) == uint256(Error.NO_ERROR);
    }

    /**
     * @notice Approve `spender` to transfer up to `amount` from `src`
     * @dev This will overwrite the approval amount for `spender`
     *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
     * @param spender The address of the account which may transfer tokens
     * @param amount The number of tokens that are approved (-1 means infinite)
     * @return Whether or not the approval succeeded
     */
    function approve(address spender, uint256 amount) external returns (bool) {
        address src = msg.sender;
        transferAllowances[src][spender] = amount;
        emit Approval(src, spender, amount);
        return true;
    }

    /**
     * @notice Get the current allowance from `owner` for `spender`
     * @param owner The address of the account which owns the tokens to be spent
     * @param spender The address of the account which may transfer tokens
     * @return The number of tokens allowed to be spent (-1 means infinite)
     */
    function allowance(address owner, address spender) external view returns (uint256) {
        return transferAllowances[owner][spender];
    }

    /**
     * @notice Get the token balance of the `owner`
     * @param owner The address of the account to query
     * @return The number of tokens owned by `owner`
     */
    function balanceOf(address owner) external view returns (uint256) {
        return accountTokens[owner];
    }

    /**
     * @notice Get the underlying balance of the `owner`
     * @dev This also accrues interest in a transaction
     * @param owner The address of the account to query
     * @return The amount of underlying owned by `owner`
     */
    function balanceOfUnderlying(address owner) external returns (uint256) {
        Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()});
        return mul_ScalarTruncate(exchangeRate, accountTokens[owner]);
    }

    /**
     * @notice Get a snapshot of the account's balances, and the cached exchange rate
     * @dev This is used by comptroller to more efficiently perform liquidity checks.
     * @param account Address of the account to snapshot
     * @return (possible error, token balance, borrow balance, exchange rate mantissa)
     */
    function getAccountSnapshot(address account)
        external
        view
        returns (
            uint256,
            uint256,
            uint256,
            uint256
        )
    {
        uint256 cTokenBalance = getCTokenBalanceInternal(account);
        uint256 borrowBalance = borrowBalanceStoredInternal(account);
        uint256 exchangeRateMantissa = exchangeRateStoredInternal();

        return (uint256(Error.NO_ERROR), cTokenBalance, borrowBalance, exchangeRateMantissa);
    }

    /**
     * @dev Function to simply retrieve block number
     *  This exists mainly for inheriting test contracts to stub this result.
     */
    function getBlockNumber() internal view returns (uint256) {
        return block.timestamp;
    }

    /**
     * @notice Returns the current per-block borrow interest rate for this cToken
     * @return The borrow interest rate per block, scaled by 1e18
     */
    function borrowRatePerBlock() external view returns (uint256) {
        return interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves);
    }

    /**
     * @notice Returns the current per-block supply interest rate for this cToken
     * @return The supply interest rate per block, scaled by 1e18
     */
    function supplyRatePerBlock() external view returns (uint256) {
        return interestRateModel.getSupplyRate(getCashPrior(), totalBorrows, totalReserves, reserveFactorMantissa);
    }

    /**
     * @notice Returns the estimated per-block borrow interest rate for this cToken after some change
     * @return The borrow interest rate per block, scaled by 1e18
     */
    function estimateBorrowRatePerBlockAfterChange(uint256 change, bool repay) external view returns (uint256) {
        uint256 cashPriorNew;
        uint256 totalBorrowsNew;

        if (repay) {
            cashPriorNew = add_(getCashPrior(), change);
            totalBorrowsNew = sub_(totalBorrows, change);
        } else {
            cashPriorNew = sub_(getCashPrior(), change);
            totalBorrowsNew = add_(totalBorrows, change);
        }
        return interestRateModel.getBorrowRate(cashPriorNew, totalBorrowsNew, totalReserves);
    }

    /**
     * @notice Returns the estimated per-block supply interest rate for this cToken after some change
     * @return The supply interest rate per block, scaled by 1e18
     */
    function estimateSupplyRatePerBlockAfterChange(uint256 change, bool repay) external view returns (uint256) {
        uint256 cashPriorNew;
        uint256 totalBorrowsNew;

        if (repay) {
            cashPriorNew = add_(getCashPrior(), change);
            totalBorrowsNew = sub_(totalBorrows, change);
        } else {
            cashPriorNew = sub_(getCashPrior(), change);
            totalBorrowsNew = add_(totalBorrows, change);
        }

        return interestRateModel.getSupplyRate(cashPriorNew, totalBorrowsNew, totalReserves, reserveFactorMantissa);
    }

    /**
     * @notice Returns the current total borrows plus accrued interest
     * @return The total borrows with interest
     */
    function totalBorrowsCurrent() external nonReentrant returns (uint256) {
        require(accrueInterest() == uint256(Error.NO_ERROR), "accrue interest failed");
        return totalBorrows;
    }

    /**
     * @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex
     * @param account The address whose balance should be calculated after updating borrowIndex
     * @return The calculated balance
     */
    function borrowBalanceCurrent(address account) external nonReentrant returns (uint256) {
        require(accrueInterest() == uint256(Error.NO_ERROR), "accrue interest failed");
        return borrowBalanceStored(account);
    }

    /**
     * @notice Return the borrow balance of account based on stored data
     * @param account The address whose balance should be calculated
     * @return The calculated balance
     */
    function borrowBalanceStored(address account) public view returns (uint256) {
        return borrowBalanceStoredInternal(account);
    }

    /**
     * @notice Return the borrow balance of account based on stored data
     * @param account The address whose balance should be calculated
     * @return the calculated balance or 0 if error code is non-zero
     */
    function borrowBalanceStoredInternal(address account) internal view returns (uint256) {
        /* Get borrowBalance and borrowIndex */
        BorrowSnapshot storage borrowSnapshot = accountBorrows[account];

        /* If borrowBalance = 0 then borrowIndex is likely also 0.
         * Rather than failing the calculation with a division by 0, we immediately return 0 in this case.
         */
        if (borrowSnapshot.principal == 0) {
            return 0;
        }

        /* Calculate new borrow balance using the interest index:
         *  recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex
         */
        uint256 principalTimesIndex = mul_(borrowSnapshot.principal, borrowIndex);
        uint256 result = div_(principalTimesIndex, borrowSnapshot.interestIndex);
        return result;
    }

    /**
     * @notice Accrue interest then return the up-to-date exchange rate
     * @return Calculated exchange rate scaled by 1e18
     */
    function exchangeRateCurrent() public nonReentrant returns (uint256) {
        require(accrueInterest() == uint256(Error.NO_ERROR), "accrue interest failed");
        return exchangeRateStored();
    }

    /**
     * @notice Calculates the exchange rate from the underlying to the CToken
     * @dev This function does not accrue interest before calculating the exchange rate
     * @return Calculated exchange rate scaled by 1e18
     */
    function exchangeRateStored() public view returns (uint256) {
        return exchangeRateStoredInternal();
    }

    /**
     * @notice Calculates the exchange rate from the underlying to the CToken
     * @dev This function does not accrue interest before calculating the exchange rate
     * @return calculated exchange rate scaled by 1e18
     */
    function exchangeRateStoredInternal() internal view returns (uint256) {
        uint256 _totalSupply = totalSupply;
        if (_totalSupply == 0) {
            /*
             * If there are no tokens minted:
             *  exchangeRate = initialExchangeRate
             */
            return initialExchangeRateMantissa;
        } else {
            /*
             * Otherwise:
             *  exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply
             */
            uint256 totalCash = getCashPrior();
            uint256 cashPlusBorrowsMinusReserves = sub_(add_(totalCash, totalBorrows), totalReserves);
            uint256 exchangeRate = div_(cashPlusBorrowsMinusReserves, Exp({mantissa: _totalSupply}));
            return exchangeRate;
        }
    }

    /**
     * @notice Get cash balance of this cToken in the underlying asset
     * @return The quantity of underlying asset owned by this contract
     */
    function getCash() external view returns (uint256) {
        return getCashPrior();
    }

    /**
     * @notice Applies accrued interest to total borrows and reserves
     * @dev This calculates interest accrued from the last checkpointed block
     *   up to the current block and writes new checkpoint to storage.
     */
    function accrueInterest() public returns (uint256) {
        /* Remember the initial block number */
        uint256 currentBlockNumber = getBlockNumber();
        uint256 accrualBlockNumberPrior = accrualBlockNumber;

        /* Short-circuit accumulating 0 interest */
        if (accrualBlockNumberPrior == currentBlockNumber) {
            return uint256(Error.NO_ERROR);
        }

        /* Read the previous values out of storage */
        uint256 cashPrior = getCashPrior();
        uint256 borrowsPrior = totalBorrows;
        uint256 reservesPrior = totalReserves;
        uint256 borrowIndexPrior = borrowIndex;

        /* Calculate the current borrow interest rate */
        uint256 borrowRateMantissa = interestRateModel.getBorrowRate(cashPrior, borrowsPrior, reservesPrior);
        require(borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate is absurdly high");

        /* Calculate the number of blocks elapsed since the last accrual */
        uint256 blockDelta = sub_(currentBlockNumber, accrualBlockNumberPrior);

        /*
         * Calculate the interest accumulated into borrows and reserves and the new index:
         *  simpleInterestFactor = borrowRate * blockDelta
         *  interestAccumulated = simpleInterestFactor * totalBorrows
         *  totalBorrowsNew = interestAccumulated + totalBorrows
         *  totalReservesNew = interestAccumulated * reserveFactor + totalReserves
         *  borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex
         */

        Exp memory simpleInterestFactor = mul_(Exp({mantissa: borrowRateMantissa}), blockDelta);
        uint256 interestAccumulated = mul_ScalarTruncate(simpleInterestFactor, borrowsPrior);
        uint256 totalBorrowsNew = add_(interestAccumulated, borrowsPrior);
        uint256 totalReservesNew = mul_ScalarTruncateAddUInt(
            Exp({mantissa: reserveFactorMantissa}),
            interestAccumulated,
            reservesPrior
        );
        uint256 borrowIndexNew = mul_ScalarTruncateAddUInt(simpleInterestFactor, borrowIndexPrior, borrowIndexPrior);

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /* We write the previously calculated values into storage */
        accrualBlockNumber = currentBlockNumber;
        borrowIndex = borrowIndexNew;
        totalBorrows = totalBorrowsNew;
        totalReserves = totalReservesNew;

        /* We emit an AccrueInterest event */
        emit AccrueInterest(cashPrior, interestAccumulated, borrowIndexNew, totalBorrowsNew);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Sender supplies assets into the market and receives cTokens in exchange
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param mintAmount The amount of the underlying asset to supply
     * @param isNative The amount is in native or not
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
     */
    function mintInternal(uint256 mintAmount, bool isNative) internal nonReentrant returns (uint256, uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
            return (fail(Error(error), FailureInfo.MINT_ACCRUE_INTEREST_FAILED), 0);
        }
        // mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to
        return mintFresh(msg.sender, mintAmount, isNative);
    }

    /**
     * @notice Sender redeems cTokens in exchange for the underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemTokens The number of cTokens to redeem into underlying
     * @param isNative The amount is in native or not
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemInternal(uint256 redeemTokens, bool isNative) internal nonReentrant returns (uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed
            return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);
        }
        // redeemFresh emits redeem-specific logs on errors, so we don't need to
        return redeemFresh(msg.sender, redeemTokens, 0, isNative);
    }

    /**
     * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemAmount The amount of underlying to receive from redeeming cTokens
     * @param isNative The amount is in native or not
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemUnderlyingInternal(uint256 redeemAmount, bool isNative) internal nonReentrant returns (uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed
            return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);
        }
        // redeemFresh emits redeem-specific logs on errors, so we don't need to
        return redeemFresh(msg.sender, 0, redeemAmount, isNative);
    }

    /**
     * @notice Sender borrows assets from the protocol to their own address
     * @param borrowAmount The amount of the underlying asset to borrow
     * @param isNative The amount is in native or not
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function borrowInternal(uint256 borrowAmount, bool isNative) internal nonReentrant returns (uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
            return fail(Error(error), FailureInfo.BORROW_ACCRUE_INTEREST_FAILED);
        }
        // borrowFresh emits borrow-specific logs on errors, so we don't need to
        return borrowFresh(msg.sender, borrowAmount, isNative);
    }

    struct BorrowLocalVars {
        MathError mathErr;
        uint256 accountBorrows;
        uint256 accountBorrowsNew;
        uint256 totalBorrowsNew;
    }

    /**
     * @notice Users borrow assets from the protocol to their own address
     * @param borrowAmount The amount of the underlying asset to borrow
     * @param isNative The amount is in native or not
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function borrowFresh(
        address payable borrower,
        uint256 borrowAmount,
        bool isNative
    ) internal returns (uint256) {
        /* Fail if borrow not allowed */
        uint256 allowed = comptroller.borrowAllowed(address(this), borrower, borrowAmount);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.BORROW_COMPTROLLER_REJECTION, allowed);
        }

        /*
         * Return if borrowAmount is zero.
         * Put behind `borrowAllowed` for accuring potential COMP rewards.
         */
        if (borrowAmount == 0) {
            accountBorrows[borrower].interestIndex = borrowIndex;
            return uint256(Error.NO_ERROR);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.BORROW_FRESHNESS_CHECK);
        }

        /* Fail gracefully if protocol has insufficient underlying cash */
        if (getCashPrior() < borrowAmount) {
            return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.BORROW_CASH_NOT_AVAILABLE);
        }

        BorrowLocalVars memory vars;

        /*
         * We calculate the new borrower and total borrow balances, failing on overflow:
         *  accountBorrowsNew = accountBorrows + borrowAmount
         *  totalBorrowsNew = totalBorrows + borrowAmount
         */
        vars.accountBorrows = borrowBalanceStoredInternal(borrower);
        vars.accountBorrowsNew = add_(vars.accountBorrows, borrowAmount);
        vars.totalBorrowsNew = add_(totalBorrows, borrowAmount);

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /* We write the previously calculated values into storage */
        accountBorrows[borrower].principal = vars.accountBorrowsNew;
        accountBorrows[borrower].interestIndex = borrowIndex;
        totalBorrows = vars.totalBorrowsNew;

        /*
         * We invoke doTransferOut for the borrower and the borrowAmount.
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  On success, the cToken borrowAmount less of cash.
         *  doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
         */
        doTransferOut(borrower, borrowAmount, isNative);

        /* We emit a Borrow event */
        emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);

        /* We call the defense hook */
        comptroller.borrowVerify(address(this), borrower, borrowAmount);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Sender repays their own borrow
     * @param repayAmount The amount to repay
     * @param isNative The amount is in native or not
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
     */
    function repayBorrowInternal(uint256 repayAmount, bool isNative) internal nonReentrant returns (uint256, uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
            return (fail(Error(error), FailureInfo.REPAY_BORROW_ACCRUE_INTEREST_FAILED), 0);
        }
        // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
        return repayBorrowFresh(msg.sender, msg.sender, repayAmount, isNative);
    }

    /**
     * @notice Sender repays a borrow belonging to borrower
     * @param borrower the account with the debt being payed off
     * @param repayAmount The amount to repay
     * @param isNative The amount is in native or not
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
     */
    function repayBorrowBehalfInternal(
        address borrower,
        uint256 repayAmount,
        bool isNative
    ) internal nonReentrant returns (uint256, uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
            return (fail(Error(error), FailureInfo.REPAY_BEHALF_ACCRUE_INTEREST_FAILED), 0);
        }
        // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
        return repayBorrowFresh(msg.sender, borrower, repayAmount, isNative);
    }

    struct RepayBorrowLocalVars {
        Error err;
        MathError mathErr;
        uint256 repayAmount;
        uint256 borrowerIndex;
        uint256 accountBorrows;
        uint256 accountBorrowsNew;
        uint256 totalBorrowsNew;
        uint256 actualRepayAmount;
    }

    /**
     * @notice Borrows are repaid by another user (possibly the borrower).
     * @param payer the account paying off the borrow
     * @param borrower the account with the debt being payed off
     * @param repayAmount the amount of undelrying tokens being returned
     * @param isNative The amount is in native or not
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
     */
    function repayBorrowFresh(
        address payer,
        address borrower,
        uint256 repayAmount,
        bool isNative
    ) internal returns (uint256, uint256) {
        /* Fail if repayBorrow not allowed */
        uint256 allowed = comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount);
        if (allowed != 0) {
            return (
                failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REPAY_BORROW_COMPTROLLER_REJECTION, allowed),
                0
            );
        }

        /*
         * Return if repayAmount is zero.
         * Put behind `repayBorrowAllowed` for accuring potential COMP rewards.
         */
        if (repayAmount == 0) {
            accountBorrows[borrower].interestIndex = borrowIndex;
            return (uint256(Error.NO_ERROR), 0);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return (fail(Error.MARKET_NOT_FRESH, FailureInfo.REPAY_BORROW_FRESHNESS_CHECK), 0);
        }

        RepayBorrowLocalVars memory vars;

        /* We remember the original borrowerIndex for verification purposes */
        vars.borrowerIndex = accountBorrows[borrower].interestIndex;

        /* We fetch the amount the borrower owes, with accumulated interest */
        vars.accountBorrows = borrowBalanceStoredInternal(borrower);

        /* If repayAmount == -1, repayAmount = accountBorrows */
        if (repayAmount == uint256(-1)) {
            vars.repayAmount = vars.accountBorrows;
        } else {
            vars.repayAmount = repayAmount;
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /*
         * We call doTransferIn for the payer and the repayAmount
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  On success, the cToken holds an additional repayAmount of cash.
         *  doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred.
         *   it returns the amount actually transferred, in case of a fee.
         */
        vars.actualRepayAmount = doTransferIn(payer, vars.repayAmount, isNative);

        /*
         * We calculate the new borrower and total borrow balances, failing on underflow:
         *  accountBorrowsNew = accountBorrows - actualRepayAmount
         *  totalBorrowsNew = totalBorrows - actualRepayAmount
         */
        vars.accountBorrowsNew = sub_(vars.accountBorrows, vars.actualRepayAmount);
        vars.totalBorrowsNew = sub_(totalBorrows, vars.actualRepayAmount);

        /* We write the previously calculated values into storage */
        accountBorrows[borrower].principal = vars.accountBorrowsNew;
        accountBorrows[borrower].interestIndex = borrowIndex;
        totalBorrows = vars.totalBorrowsNew;

        /* We emit a RepayBorrow event */
        emit RepayBorrow(payer, borrower, vars.actualRepayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);

        /* We call the defense hook */
        comptroller.repayBorrowVerify(address(this), payer, borrower, vars.actualRepayAmount, vars.borrowerIndex);

        return (uint256(Error.NO_ERROR), vars.actualRepayAmount);
    }

    /**
     * @notice The sender liquidates the borrowers collateral.
     *  The collateral seized is transferred to the liquidator.
     * @param borrower The borrower of this cToken to be liquidated
     * @param repayAmount The amount of the underlying borrowed asset to repay
     * @param cTokenCollateral The market in which to seize collateral from the borrower
     * @param isNative The amount is in native or not
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
     */
    function liquidateBorrowInternal(
        address borrower,
        uint256 repayAmount,
        CTokenInterface cTokenCollateral,
        bool isNative
    ) internal nonReentrant returns (uint256, uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed
            return (fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED), 0);
        }

        error = cTokenCollateral.accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed
            return (fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED), 0);
        }

        // liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to
        return liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral, isNative);
    }

    struct LiquidateBorrowLocalVars {
        uint256 repayBorrowError;
        uint256 actualRepayAmount;
        uint256 amountSeizeError;
        uint256 seizeTokens;
    }

    /**
     * @notice The liquidator liquidates the borrowers collateral.
     *  The collateral seized is transferred to the liquidator.
     * @param borrower The borrower of this cToken to be liquidated
     * @param liquidator The address repaying the borrow and seizing collateral
     * @param cTokenCollateral The market in which to seize collateral from the borrower
     * @param repayAmount The amount of the underlying borrowed asset to repay
     * @param isNative The amount is in native or not
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
     */
    function liquidateBorrowFresh(
        address liquidator,
        address borrower,
        uint256 repayAmount,
        CTokenInterface cTokenCollateral,
        bool isNative
    ) internal returns (uint256, uint256) {
        /* Fail if liquidate not allowed */
        uint256 allowed = comptroller.liquidateBorrowAllowed(
            address(this),
            address(cTokenCollateral),
            liquidator,
            borrower,
            repayAmount
        );
        if (allowed != 0) {
            return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_COMPTROLLER_REJECTION, allowed), 0);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return (fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_FRESHNESS_CHECK), 0);
        }

        /* Verify cTokenCollateral market's block number equals current block number */
        if (cTokenCollateral.accrualBlockNumber() != getBlockNumber()) {
            return (fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_COLLATERAL_FRESHNESS_CHECK), 0);
        }

        /* Fail if borrower = liquidator */
        if (borrower == liquidator) {
            return (fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_LIQUIDATOR_IS_BORROWER), 0);
        }

        /* Fail if repayAmount = 0 */
        if (repayAmount == 0) {
            return (fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_ZERO), 0);
        }

        /* Fail if repayAmount = -1 */
        if (repayAmount == uint256(-1)) {
            return (fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX), 0);
        }

        LiquidateBorrowLocalVars memory vars;

        /* Fail if repayBorrow fails */
        (vars.repayBorrowError, vars.actualRepayAmount) = repayBorrowFresh(liquidator, borrower, repayAmount, isNative);
        if (vars.repayBorrowError != uint256(Error.NO_ERROR)) {
            return (fail(Error(vars.repayBorrowError), FailureInfo.LIQUIDATE_REPAY_BORROW_FRESH_FAILED), 0);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /* We calculate the number of collateral tokens that will be seized */
        (vars.amountSeizeError, vars.seizeTokens) = comptroller.liquidateCalculateSeizeTokens(
            address(this),
            address(cTokenCollateral),
            vars.actualRepayAmount
        );
        require(
            vars.amountSeizeError == uint256(Error.NO_ERROR),
            "LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED"
        );

        /* Revert if borrower collateral token balance < seizeTokens */
        require(cTokenCollateral.balanceOf(borrower) >= vars.seizeTokens, "LIQUIDATE_SEIZE_TOO_MUCH");

        // If this is also the collateral, run seizeInternal to avoid re-entrancy, otherwise make an external call
        uint256 seizeError;
        if (address(cTokenCollateral) == address(this)) {
            seizeError = seizeInternal(address(this), liquidator, borrower, vars.seizeTokens);
        } else {
            seizeError = cTokenCollateral.seize(liquidator, borrower, vars.seizeTokens);
        }

        /* Revert if seize tokens fails (since we cannot be sure of side effects) */
        require(seizeError == uint256(Error.NO_ERROR), "token seizure failed");

        /* We emit a LiquidateBorrow event */
        emit LiquidateBorrow(liquidator, borrower, vars.actualRepayAmount, address(cTokenCollateral), vars.seizeTokens);

        /* We call the defense hook */
        comptroller.liquidateBorrowVerify(
            address(this),
            address(cTokenCollateral),
            liquidator,
            borrower,
            vars.actualRepayAmount,
            vars.seizeTokens
        );

        return (uint256(Error.NO_ERROR), vars.actualRepayAmount);
    }

    /**
     * @notice Transfers collateral tokens (this market) to the liquidator.
     * @dev Will fail unless called by another cToken during the process of liquidation.
     *  Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter.
     * @param liquidator The account receiving seized collateral
     * @param borrower The account having collateral seized
     * @param seizeTokens The number of cTokens to seize
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function seize(
        address liquidator,
        address borrower,
        uint256 seizeTokens
    ) external nonReentrant returns (uint256) {
        return seizeInternal(msg.sender, liquidator, borrower, seizeTokens);
    }

    /*** Admin Functions ***/

    /**
     * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
     * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
     * @param newPendingAdmin New pending admin.
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setPendingAdmin(address payable newPendingAdmin) external returns (uint256) {
        // Check caller = admin
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);
        }

        // Save current value, if any, for inclusion in log
        address oldPendingAdmin = pendingAdmin;

        // Store pendingAdmin with value newPendingAdmin
        pendingAdmin = newPendingAdmin;

        // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
        emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
     * @dev Admin function for pending admin to accept role and update admin
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _acceptAdmin() external returns (uint256) {
        // Check caller is pendingAdmin and pendingAdmin ≠ address(0)
        if (msg.sender != pendingAdmin || msg.sender == address(0)) {
            return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);
        }

        // Save current values for inclusion in log
        address oldAdmin = admin;
        address oldPendingAdmin = pendingAdmin;

        // Store admin with value pendingAdmin
        admin = pendingAdmin;

        // Clear the pending value
        pendingAdmin = address(0);

        emit NewAdmin(oldAdmin, admin);
        emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Sets a new comptroller for the market
     * @dev Admin function to set a new comptroller
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setComptroller(ComptrollerInterface newComptroller) public returns (uint256) {
        // Check caller is admin
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_COMPTROLLER_OWNER_CHECK);
        }

        ComptrollerInterface oldComptroller = comptroller;
        // Ensure invoke comptroller.isComptroller() returns true
        require(newComptroller.isComptroller(), "marker method returned false");

        // Set market's comptroller to newComptroller
        comptroller = newComptroller;

        // Emit NewComptroller(oldComptroller, newComptroller)
        emit NewComptroller(oldComptroller, newComptroller);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh
     * @dev Admin function to accrue interest and set a new reserve factor
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setReserveFactor(uint256 newReserveFactorMantissa) external nonReentrant returns (uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reserve factor change failed.
            return fail(Error(error), FailureInfo.SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED);
        }
        // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to.
        return _setReserveFactorFresh(newReserveFactorMantissa);
    }

    /**
     * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual)
     * @dev Admin function to set a new reserve factor
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setReserveFactorFresh(uint256 newReserveFactorMantissa) internal returns (uint256) {
        // Check caller is admin
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK);
        }

        // Verify market's block number equals current block number
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK);
        }

        // Check newReserveFactor ≤ maxReserveFactor
        if (newReserveFactorMantissa > reserveFactorMaxMantissa) {
            return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK);
        }

        uint256 oldReserveFactorMantissa = reserveFactorMantissa;
        reserveFactorMantissa = newReserveFactorMantissa;

        emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Accrues interest and reduces reserves by transferring from msg.sender
     * @param addAmount Amount of addition to reserves
     * @param isNative The amount is in native or not
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _addReservesInternal(uint256 addAmount, bool isNative) internal nonReentrant returns (uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed.
            return fail(Error(error), FailureInfo.ADD_RESERVES_ACCRUE_INTEREST_FAILED);
        }

        // _addReservesFresh emits reserve-addition-specific logs on errors, so we don't need to.
        (error, ) = _addReservesFresh(addAmount, isNative);
        return error;
    }

    /**
     * @notice Add reserves by transferring from caller
     * @dev Requires fresh interest accrual
     * @param addAmount Amount of addition to reserves
     * @param isNative The amount is in native or not
     * @return (uint, uint) An error code (0=success, otherwise a failure (see ErrorReporter.sol for details)) and the actual amount added, net token fees
     */
    function _addReservesFresh(uint256 addAmount, bool isNative) internal returns (uint256, uint256) {
        // totalReserves + actualAddAmount
        uint256 totalReservesNew;
        uint256 actualAddAmount;

        // We fail gracefully unless market's block number equals current block number
        if (accrualBlockNumber != getBlockNumber()) {
            return (fail(Error.MARKET_NOT_FRESH, FailureInfo.ADD_RESERVES_FRESH_CHECK), actualAddAmount);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /*
         * We call doTransferIn for the caller and the addAmount
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  On success, the cToken holds an additional addAmount of cash.
         *  doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred.
         *  it returns the amount actually transferred, in case of a fee.
         */

        actualAddAmount = doTransferIn(msg.sender, addAmount, isNative);

        totalReservesNew = add_(totalReserves, actualAddAmount);

        // Store reserves[n+1] = reserves[n] + actualAddAmount
        totalReserves = totalReservesNew;

        /* Emit NewReserves(admin, actualAddAmount, reserves[n+1]) */
        emit ReservesAdded(msg.sender, actualAddAmount, totalReservesNew);

        /* Return (NO_ERROR, actualAddAmount) */
        return (uint256(Error.NO_ERROR), actualAddAmount);
    }

    /**
     * @notice Accrues interest and reduces reserves by transferring to admin
     * @param reduceAmount Amount of reduction to reserves
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _reduceReserves(uint256 reduceAmount) external nonReentrant returns (uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed.
            return fail(Error(error), FailureInfo.REDUCE_RESERVES_ACCRUE_INTEREST_FAILED);
        }
        // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to.
        return _reduceReservesFresh(reduceAmount);
    }

    /**
     * @notice Reduces reserves by transferring to admin
     * @dev Requires fresh interest accrual
     * @param reduceAmount Amount of reduction to reserves
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _reduceReservesFresh(uint256 reduceAmount) internal returns (uint256) {
        // totalReserves - reduceAmount
        uint256 totalReservesNew;

        // Check caller is admin
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK);
        }

        // We fail gracefully unless market's block number equals current block number
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK);
        }

        // Fail gracefully if protocol has insufficient underlying cash
        if (getCashPrior() < reduceAmount) {
            return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE);
        }

        // Check reduceAmount ≤ reserves[n] (totalReserves)
        if (reduceAmount > totalReserves) {
            return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        totalReservesNew = sub_(totalReserves, reduceAmount);

        // Store reserves[n+1] = reserves[n] - reduceAmount
        totalReserves = totalReservesNew;

        // doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
        // Restrict reducing reserves in native token. Implementations except `CWrappedNative` won't use parameter `isNative`.
        doTransferOut(admin, reduceAmount, true);

        emit ReservesReduced(admin, reduceAmount, totalReservesNew);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh
     * @dev Admin function to accrue interest and update the interest rate model
     * @param newInterestRateModel the new interest rate model to use
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint256) {
        uint256 error = accrueInterest();
        if (error != uint256(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted change of interest rate model failed
            return fail(Error(error), FailureInfo.SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED);
        }
        // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to.
        return _setInterestRateModelFresh(newInterestRateModel);
    }

    /**
     * @notice updates the interest rate model (*requires fresh interest accrual)
     * @dev Admin function to update the interest rate model
     * @param newInterestRateModel the new interest rate model to use
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint256) {
        // Used to store old model for use in the event that is emitted on success
        InterestRateModel oldInterestRateModel;

        // Check caller is admin
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK);
        }

        // We fail gracefully unless market's block number equals current block number
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK);
        }

        // Track the market's current interest rate model
        oldInterestRateModel = interestRateModel;

        // Ensure invoke newInterestRateModel.isInterestRateModel() returns true
        require(newInterestRateModel.isInterestRateModel(), "marker method returned false");

        // Set the interest rate model to newInterestRateModel
        interestRateModel = newInterestRateModel;

        // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel)
        emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel);

        return uint256(Error.NO_ERROR);
    }

    /*** Safe Token ***/

    /**
     * @notice Gets balance of this contract in terms of the underlying
     * @dev This excludes the value of the current message, if any
     * @return The quantity of underlying owned by this contract
     */
    function getCashPrior() internal view returns (uint256);

    /**
     * @dev Performs a transfer in, reverting upon failure. Returns the amount actually transferred to the protocol, in case of a fee.
     *  This may revert due to insufficient balance or insufficient allowance.
     */
    function doTransferIn(
        address from,
        uint256 amount,
        bool isNative
    ) internal returns (uint256);

    /**
     * @dev Performs a transfer out, ideally returning an explanatory error code upon failure tather than reverting.
     *  If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract.
     *  If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions.
     */
    function doTransferOut(
        address payable to,
        uint256 amount,
        bool isNative
    ) internal;

    /**
     * @notice Transfer `tokens` tokens from `src` to `dst` by `spender`
     * @dev Called by both `transfer` and `transferFrom` internally
     */
    function transferTokens(
        address spender,
        address src,
        address dst,
        uint256 tokens
    ) internal returns (uint256);

    /**
     * @notice Get the account's cToken balances
     */
    function getCTokenBalanceInternal(address account) internal view returns (uint256);

    /**
     * @notice User supplies assets into the market and receives cTokens in exchange
     * @dev Assumes interest has already been accrued up to the current block
     */
    function mintFresh(
        address minter,
        uint256 mintAmount,
        bool isNative
    ) internal returns (uint256, uint256);

    /**
     * @notice User redeems cTokens in exchange for the underlying asset
     * @dev Assumes interest has already been accrued up to the current block
     */
    function redeemFresh(
        address payable redeemer,
        uint256 redeemTokensIn,
        uint256 redeemAmountIn,
        bool isNative
    ) internal returns (uint256);

    /**
     * @notice Transfers collateral tokens (this market) to the liquidator.
     * @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken.
     *  Its absolutely critical to use msg.sender as the seizer cToken and not a parameter.
     */
    function seizeInternal(
        address seizerToken,
        address liquidator,
        address borrower,
        uint256 seizeTokens
    ) internal returns (uint256);

    /*** Reentrancy Guard ***/

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     */
    modifier nonReentrant() {
        require(_notEntered, "re-entered");
        _notEntered = false;
        _;
        _notEntered = true; // get a gas-refund post-Istanbul
    }
}

File 4 of 20 : CTokenInterfaces.sol
pragma solidity ^0.5.16;

import "./ComptrollerInterface.sol";
import "./InterestRateModel.sol";
import "./ERC3156FlashBorrowerInterface.sol";

contract CTokenStorage {
    /**
     * @dev Guard variable for re-entrancy checks
     */
    bool internal _notEntered;

    /**
     * @notice EIP-20 token name for this token
     */
    string public name;

    /**
     * @notice EIP-20 token symbol for this token
     */
    string public symbol;

    /**
     * @notice EIP-20 token decimals for this token
     */
    uint8 public decimals;

    /**
     * @notice Maximum borrow rate that can ever be applied (.0005% / block)
     */

    uint256 internal constant borrowRateMaxMantissa = 0.0005e16;

    /**
     * @notice Maximum fraction of interest that can be set aside for reserves
     */
    uint256 internal constant reserveFactorMaxMantissa = 1e18;

    /**
     * @notice Administrator for this contract
     */
    address payable public admin;

    /**
     * @notice Pending administrator for this contract
     */
    address payable public pendingAdmin;

    /**
     * @notice Contract which oversees inter-cToken operations
     */
    ComptrollerInterface public comptroller;

    /**
     * @notice Model which tells what the current interest rate should be
     */
    InterestRateModel public interestRateModel;

    /**
     * @notice Initial exchange rate used when minting the first CTokens (used when totalSupply = 0)
     */
    uint256 internal initialExchangeRateMantissa;

    /**
     * @notice Fraction of interest currently set aside for reserves
     */
    uint256 public reserveFactorMantissa;

    /**
     * @notice Block number that interest was last accrued at
     */
    uint256 public accrualBlockNumber;

    /**
     * @notice Accumulator of the total earned interest rate since the opening of the market
     */
    uint256 public borrowIndex;

    /**
     * @notice Total amount of outstanding borrows of the underlying in this market
     */
    uint256 public totalBorrows;

    /**
     * @notice Total amount of reserves of the underlying held in this market
     */
    uint256 public totalReserves;

    /**
     * @notice Total number of tokens in circulation
     */
    uint256 public totalSupply;

    /**
     * @notice Official record of token balances for each account
     */
    mapping(address => uint256) internal accountTokens;

    /**
     * @notice Approved token transfer amounts on behalf of others
     */
    mapping(address => mapping(address => uint256)) internal transferAllowances;

    /**
     * @notice Container for borrow balance information
     * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action
     * @member interestIndex Global borrowIndex as of the most recent balance-changing action
     */
    struct BorrowSnapshot {
        uint256 principal;
        uint256 interestIndex;
    }

    /**
     * @notice Mapping of account addresses to outstanding borrow balances
     */
    mapping(address => BorrowSnapshot) internal accountBorrows;
}

contract CErc20Storage {
    /**
     * @notice Underlying asset for this CToken
     */
    address public underlying;

    /**
     * @notice Implementation address for this contract
     */
    address public implementation;
}

contract CSupplyCapStorage {
    /**
     * @notice Internal cash counter for this CToken. Should equal underlying.balanceOf(address(this)) for CERC20.
     */
    uint256 public internalCash;
}

contract CCollateralCapStorage {
    /**
     * @notice Total number of tokens used as collateral in circulation.
     */
    uint256 public totalCollateralTokens;

    /**
     * @notice Record of token balances which could be treated as collateral for each account.
     *         If collateral cap is not set, the value should be equal to accountTokens.
     */
    mapping(address => uint256) public accountCollateralTokens;

    /**
     * @notice Check if accountCollateralTokens have been initialized.
     */
    mapping(address => bool) public isCollateralTokenInit;

    /**
     * @notice Collateral cap for this CToken, zero for no cap.
     */
    uint256 public collateralCap;
}

/*** Interface ***/

contract CTokenInterface is CTokenStorage {
    /**
     * @notice Indicator that this is a CToken contract (for inspection)
     */
    bool public constant isCToken = true;

    /*** Market Events ***/

    /**
     * @notice Event emitted when interest is accrued
     */
    event AccrueInterest(uint256 cashPrior, uint256 interestAccumulated, uint256 borrowIndex, uint256 totalBorrows);

    /**
     * @notice Event emitted when tokens are minted
     */
    event Mint(address minter, uint256 mintAmount, uint256 mintTokens);

    /**
     * @notice Event emitted when tokens are redeemed
     */
    event Redeem(address redeemer, uint256 redeemAmount, uint256 redeemTokens);

    /**
     * @notice Event emitted when underlying is borrowed
     */
    event Borrow(address borrower, uint256 borrowAmount, uint256 accountBorrows, uint256 totalBorrows);

    /**
     * @notice Event emitted when a borrow is repaid
     */
    event RepayBorrow(
        address payer,
        address borrower,
        uint256 repayAmount,
        uint256 accountBorrows,
        uint256 totalBorrows
    );

    /**
     * @notice Event emitted when a borrow is liquidated
     */
    event LiquidateBorrow(
        address liquidator,
        address borrower,
        uint256 repayAmount,
        address cTokenCollateral,
        uint256 seizeTokens
    );

    /*** Admin Events ***/

    /**
     * @notice Event emitted when pendingAdmin is changed
     */
    event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);

    /**
     * @notice Event emitted when pendingAdmin is accepted, which means admin is updated
     */
    event NewAdmin(address oldAdmin, address newAdmin);

    /**
     * @notice Event emitted when comptroller is changed
     */
    event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller);

    /**
     * @notice Event emitted when interestRateModel is changed
     */
    event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel);

    /**
     * @notice Event emitted when the reserve factor is changed
     */
    event NewReserveFactor(uint256 oldReserveFactorMantissa, uint256 newReserveFactorMantissa);

    /**
     * @notice Event emitted when the reserves are added
     */
    event ReservesAdded(address benefactor, uint256 addAmount, uint256 newTotalReserves);

    /**
     * @notice Event emitted when the reserves are reduced
     */
    event ReservesReduced(address admin, uint256 reduceAmount, uint256 newTotalReserves);

    /**
     * @notice EIP20 Transfer event
     */
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /**
     * @notice EIP20 Approval event
     */
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /**
     * @notice Failure event
     */
    event Failure(uint256 error, uint256 info, uint256 detail);

    /*** User Interface ***/

    function transfer(address dst, uint256 amount) external returns (bool);

    function transferFrom(
        address src,
        address dst,
        uint256 amount
    ) external returns (bool);

    function approve(address spender, uint256 amount) external returns (bool);

    function allowance(address owner, address spender) external view returns (uint256);

    function balanceOf(address owner) external view returns (uint256);

    function balanceOfUnderlying(address owner) external returns (uint256);

    function getAccountSnapshot(address account)
        external
        view
        returns (
            uint256,
            uint256,
            uint256,
            uint256
        );

    function borrowRatePerBlock() external view returns (uint256);

    function supplyRatePerBlock() external view returns (uint256);

    function totalBorrowsCurrent() external returns (uint256);

    function borrowBalanceCurrent(address account) external returns (uint256);

    function borrowBalanceStored(address account) public view returns (uint256);

    function exchangeRateCurrent() public returns (uint256);

    function exchangeRateStored() public view returns (uint256);

    function getCash() external view returns (uint256);

    function accrueInterest() public returns (uint256);

    function seize(
        address liquidator,
        address borrower,
        uint256 seizeTokens
    ) external returns (uint256);

    /*** Admin Functions ***/

    function _setPendingAdmin(address payable newPendingAdmin) external returns (uint256);

    function _acceptAdmin() external returns (uint256);

    function _setComptroller(ComptrollerInterface newComptroller) public returns (uint256);

    function _setReserveFactor(uint256 newReserveFactorMantissa) external returns (uint256);

    function _reduceReserves(uint256 reduceAmount) external returns (uint256);

    function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint256);
}

contract CErc20Interface is CErc20Storage {
    /*** User Interface ***/

    function mint(uint256 mintAmount) external returns (uint256);

    function redeem(uint256 redeemTokens) external returns (uint256);

    function redeemUnderlying(uint256 redeemAmount) external returns (uint256);

    function borrow(uint256 borrowAmount) external returns (uint256);

    function repayBorrow(uint256 repayAmount) external returns (uint256);

    function repayBorrowBehalf(address borrower, uint256 repayAmount) external returns (uint256);

    function liquidateBorrow(
        address borrower,
        uint256 repayAmount,
        CTokenInterface cTokenCollateral
    ) external returns (uint256);

    function _addReserves(uint256 addAmount) external returns (uint256);
}

contract CWrappedNativeInterface is CErc20Interface {
    /**
     * @notice Flash loan fee ratio
     */
    uint256 public constant flashFeeBips = 3;

    /*** Market Events ***/

    /**
     * @notice Event emitted when a flashloan occured
     */
    event Flashloan(address indexed receiver, uint256 amount, uint256 totalFee, uint256 reservesFee);

    /*** User Interface ***/

    function mintNative() external payable returns (uint256);

    function redeemNative(uint256 redeemTokens) external returns (uint256);

    function redeemUnderlyingNative(uint256 redeemAmount) external returns (uint256);

    function borrowNative(uint256 borrowAmount) external returns (uint256);

    function repayBorrowNative() external payable returns (uint256);

    function repayBorrowBehalfNative(address borrower) external payable returns (uint256);

    function liquidateBorrowNative(address borrower, CTokenInterface cTokenCollateral)
        external
        payable
        returns (uint256);

    function flashLoan(
        ERC3156FlashBorrowerInterface receiver,
        address initiator,
        uint256 amount,
        bytes calldata data
    ) external returns (bool);

    function _addReservesNative() external payable returns (uint256);
}

contract CCapableErc20Interface is CErc20Interface, CSupplyCapStorage {
    /**
     * @notice Flash loan fee ratio
     */
    uint256 public constant flashFeeBips = 3;

    /*** Market Events ***/

    /**
     * @notice Event emitted when a flashloan occured
     */
    event Flashloan(address indexed receiver, uint256 amount, uint256 totalFee, uint256 reservesFee);

    /*** User Interface ***/

    function gulp() external;
}

contract CCollateralCapErc20Interface is CCapableErc20Interface, CCollateralCapStorage {
    /*** Admin Events ***/

    /**
     * @notice Event emitted when collateral cap is set
     */
    event NewCollateralCap(address token, uint256 newCap);

    /**
     * @notice Event emitted when user collateral is changed
     */
    event UserCollateralChanged(address account, uint256 newCollateralTokens);

    /*** User Interface ***/

    function registerCollateral(address account) external returns (uint256);

    function unregisterCollateral(address account) external;

    function flashLoan(
        ERC3156FlashBorrowerInterface receiver,
        address initiator,
        uint256 amount,
        bytes calldata data
    ) external returns (bool);

    /*** Admin Functions ***/

    function _setCollateralCap(uint256 newCollateralCap) external;
}

contract CDelegatorInterface {
    /**
     * @notice Emitted when implementation is changed
     */
    event NewImplementation(address oldImplementation, address newImplementation);

    /**
     * @notice Called by the admin to update the implementation of the delegator
     * @param implementation_ The address of the new implementation for delegation
     * @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
     * @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
     */
    function _setImplementation(
        address implementation_,
        bool allowResign,
        bytes memory becomeImplementationData
    ) public;
}

contract CDelegateInterface {
    /**
     * @notice Called by the delegator on a delegate to initialize it for duty
     * @dev Should revert if any issues arise which make it unfit for delegation
     * @param data The encoded bytes data for any initialization
     */
    function _becomeImplementation(bytes memory data) public;

    /**
     * @notice Called by the delegator on a delegate to forfeit its responsibility
     */
    function _resignImplementation() public;
}

/*** External interface ***/

/**
 * @title Flash loan receiver interface
 */
interface IFlashloanReceiver {
    function executeOperation(
        address sender,
        address underlying,
        uint256 amount,
        uint256 fee,
        bytes calldata params
    ) external;
}

File 5 of 20 : CarefulMath.sol
pragma solidity ^0.5.16;

/**
 * @title Careful Math
 * @author Compound
 * @notice Derived from OpenZeppelin's SafeMath library
 *         https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
 */
contract CarefulMath {
    /**
     * @dev Possible error codes that we can return
     */
    enum MathError {
        NO_ERROR,
        DIVISION_BY_ZERO,
        INTEGER_OVERFLOW,
        INTEGER_UNDERFLOW
    }

    /**
     * @dev Multiplies two numbers, returns an error on overflow.
     */
    function mulUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) {
        if (a == 0) {
            return (MathError.NO_ERROR, 0);
        }

        uint256 c = a * b;

        if (c / a != b) {
            return (MathError.INTEGER_OVERFLOW, 0);
        } else {
            return (MathError.NO_ERROR, c);
        }
    }

    /**
     * @dev Integer division of two numbers, truncating the quotient.
     */
    function divUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) {
        if (b == 0) {
            return (MathError.DIVISION_BY_ZERO, 0);
        }

        return (MathError.NO_ERROR, a / b);
    }

    /**
     * @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend).
     */
    function subUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) {
        if (b <= a) {
            return (MathError.NO_ERROR, a - b);
        } else {
            return (MathError.INTEGER_UNDERFLOW, 0);
        }
    }

    /**
     * @dev Adds two numbers, returns an error on overflow.
     */
    function addUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) {
        uint256 c = a + b;

        if (c >= a) {
            return (MathError.NO_ERROR, c);
        } else {
            return (MathError.INTEGER_OVERFLOW, 0);
        }
    }

    /**
     * @dev add a and b and then subtract c
     */
    function addThenSubUInt(
        uint256 a,
        uint256 b,
        uint256 c
    ) internal pure returns (MathError, uint256) {
        (MathError err0, uint256 sum) = addUInt(a, b);

        if (err0 != MathError.NO_ERROR) {
            return (err0, 0);
        }

        return subUInt(sum, c);
    }
}

File 6 of 20 : Comptroller.sol
pragma solidity ^0.5.16;

import "./CToken.sol";
import "./ErrorReporter.sol";
import "./Exponential.sol";
import "./PriceOracle/PriceOracle.sol";
import "./ComptrollerInterface.sol";
import "./ComptrollerStorage.sol";
import "./LiquidityMiningInterface.sol";
import "./Unitroller.sol";
import "./Governance/Comp.sol";

/**
 * @title Compound's Comptroller Contract
 * @author Compound (modified by Cream)
 */
contract Comptroller is ComptrollerV1Storage, ComptrollerInterface, ComptrollerErrorReporter, Exponential {
    /// @notice Emitted when an admin supports a market
    event MarketListed(CToken cToken);

    /// @notice Emitted when an admin delists a market
    event MarketDelisted(CToken cToken);

    /// @notice Emitted when an account enters a market
    event MarketEntered(CToken cToken, address account);

    /// @notice Emitted when an account exits a market
    event MarketExited(CToken cToken, address account);

    /// @notice Emitted when close factor is changed by admin
    event NewCloseFactor(uint256 oldCloseFactorMantissa, uint256 newCloseFactorMantissa);

    /// @notice Emitted when a collateral factor is changed by admin
    event NewCollateralFactor(CToken cToken, uint256 oldCollateralFactorMantissa, uint256 newCollateralFactorMantissa);

    /// @notice Emitted when liquidation incentive is changed by admin
    event NewLiquidationIncentive(uint256 oldLiquidationIncentiveMantissa, uint256 newLiquidationIncentiveMantissa);

    /// @notice Emitted when price oracle is changed
    event NewPriceOracle(PriceOracle oldPriceOracle, PriceOracle newPriceOracle);

    /// @notice Emitted when pause guardian is changed
    event NewPauseGuardian(address oldPauseGuardian, address newPauseGuardian);

    /// @notice Emitted when liquidity mining module is changed
    event NewLiquidityMining(address oldLiquidityMining, address newLiquidityMining);

    /// @notice Emitted when an action is paused globally
    event ActionPaused(string action, bool pauseState);

    /// @notice Emitted when an action is paused on a market
    event ActionPaused(CToken cToken, string action, bool pauseState);

    /// @notice Emitted when borrow cap for a cToken is changed
    event NewBorrowCap(CToken indexed cToken, uint256 newBorrowCap);

    /// @notice Emitted when borrow cap guardian is changed
    event NewBorrowCapGuardian(address oldBorrowCapGuardian, address newBorrowCapGuardian);

    /// @notice Emitted when supply cap for a cToken is changed
    event NewSupplyCap(CToken indexed cToken, uint256 newSupplyCap);

    /// @notice Emitted when supply cap guardian is changed
    event NewSupplyCapGuardian(address oldSupplyCapGuardian, address newSupplyCapGuardian);

    /// @notice Emitted when protocol's credit limit has changed
    event CreditLimitChanged(address protocol, address market, uint256 creditLimit);

    /// @notice Emitted when cToken version is changed
    event NewCTokenVersion(CToken cToken, Version oldVersion, Version newVersion);

    // No collateralFactorMantissa may exceed this value
    uint256 internal constant collateralFactorMaxMantissa = 0.9e18; // 0.9

    constructor() public {
        admin = msg.sender;
    }

    /*** Assets You Are In ***/

    /**
     * @notice Returns the assets an account has entered
     * @param account The address of the account to pull assets for
     * @return A dynamic list with the assets the account has entered
     */
    function getAssetsIn(address account) external view returns (CToken[] memory) {
        CToken[] memory assetsIn = accountAssets[account];

        return assetsIn;
    }

    /**
     * @notice Returns whether the given account is entered in the given asset
     * @param account The address of the account to check
     * @param cToken The cToken to check
     * @return True if the account is in the asset, otherwise false.
     */
    function checkMembership(address account, CToken cToken) external view returns (bool) {
        return markets[address(cToken)].accountMembership[account];
    }

    /**
     * @notice Add assets to be included in account liquidity calculation
     * @param cTokens The list of addresses of the cToken markets to be enabled
     * @return Success indicator for whether each corresponding market was entered
     */
    function enterMarkets(address[] memory cTokens) public returns (uint256[] memory) {
        uint256 len = cTokens.length;

        uint256[] memory results = new uint256[](len);
        for (uint256 i = 0; i < len; i++) {
            CToken cToken = CToken(cTokens[i]);

            results[i] = uint256(addToMarketInternal(cToken, msg.sender));
        }

        return results;
    }

    /**
     * @notice Add the market to the borrower's "assets in" for liquidity calculations
     * @param cToken The market to enter
     * @param borrower The address of the account to modify
     * @return Success indicator for whether the market was entered
     */
    function addToMarketInternal(CToken cToken, address borrower) internal returns (Error) {
        Market storage marketToJoin = markets[address(cToken)];

        if (!marketToJoin.isListed) {
            // market is not listed, cannot join
            return Error.MARKET_NOT_LISTED;
        }

        if (marketToJoin.version == Version.COLLATERALCAP) {
            // register collateral for the borrower if the token is CollateralCap version.
            CCollateralCapErc20Interface(address(cToken)).registerCollateral(borrower);
        }

        if (marketToJoin.accountMembership[borrower] == true) {
            // already joined
            return Error.NO_ERROR;
        }

        // survived the gauntlet, add to list
        // NOTE: we store these somewhat redundantly as a significant optimization
        //  this avoids having to iterate through the list for the most common use cases
        //  that is, only when we need to perform liquidity checks
        //  and not whenever we want to check if an account is in a particular market
        marketToJoin.accountMembership[borrower] = true;
        accountAssets[borrower].push(cToken);

        emit MarketEntered(cToken, borrower);

        return Error.NO_ERROR;
    }

    /**
     * @notice Removes asset from sender's account liquidity calculation
     * @dev Sender must not have an outstanding borrow balance in the asset,
     *  or be providing necessary collateral for an outstanding borrow.
     * @param cTokenAddress The address of the asset to be removed
     * @return Whether or not the account successfully exited the market
     */
    function exitMarket(address cTokenAddress) external returns (uint256) {
        CToken cToken = CToken(cTokenAddress);
        /* Get sender tokensHeld and amountOwed underlying from the cToken */
        (uint256 oErr, uint256 tokensHeld, uint256 amountOwed, ) = cToken.getAccountSnapshot(msg.sender);
        require(oErr == 0, "exitMarket: getAccountSnapshot failed"); // semi-opaque error code

        /* Fail if the sender has a borrow balance */
        if (amountOwed != 0) {
            return fail(Error.NONZERO_BORROW_BALANCE, FailureInfo.EXIT_MARKET_BALANCE_OWED);
        }

        /* Fail if the sender is not permitted to redeem all of their tokens */
        uint256 allowed = redeemAllowedInternal(cTokenAddress, msg.sender, tokensHeld);
        if (allowed != 0) {
            return failOpaque(Error.REJECTION, FailureInfo.EXIT_MARKET_REJECTION, allowed);
        }

        Market storage marketToExit = markets[cTokenAddress];

        if (marketToExit.version == Version.COLLATERALCAP) {
            CCollateralCapErc20Interface(cTokenAddress).unregisterCollateral(msg.sender);
        }

        /* Return true if the sender is not already ‘in’ the market */
        if (!marketToExit.accountMembership[msg.sender]) {
            return uint256(Error.NO_ERROR);
        }

        /* Set cToken account membership to false */
        delete marketToExit.accountMembership[msg.sender];

        /* Delete cToken from the account’s list of assets */
        // load into memory for faster iteration
        CToken[] memory userAssetList = accountAssets[msg.sender];
        uint256 len = userAssetList.length;
        uint256 assetIndex = len;
        for (uint256 i = 0; i < len; i++) {
            if (userAssetList[i] == cToken) {
                assetIndex = i;
                break;
            }
        }

        // We *must* have found the asset in the list or our redundant data structure is broken
        assert(assetIndex < len);

        // copy last item in list to location of item to be removed, reduce length by 1
        CToken[] storage storedList = accountAssets[msg.sender];
        if (assetIndex != storedList.length - 1) {
            storedList[assetIndex] = storedList[storedList.length - 1];
        }
        storedList.length--;

        emit MarketExited(cToken, msg.sender);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Return a specific market is listed or not
     * @param cTokenAddress The address of the asset to be checked
     * @return Whether or not the market is listed
     */
    function isMarketListed(address cTokenAddress) public view returns (bool) {
        return markets[cTokenAddress].isListed;
    }

    /*** Policy Hooks ***/

    /**
     * @notice Checks if the account should be allowed to mint tokens in the given market
     * @param cToken The market to verify the mint against
     * @param minter The account which would get the minted tokens
     * @param mintAmount The amount of underlying being supplied to the market in exchange for tokens
     * @return 0 if the mint is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
     */
    function mintAllowed(
        address cToken,
        address minter,
        uint256 mintAmount
    ) external returns (uint256) {
        // Pausing is a very serious situation - we revert to sound the alarms
        require(!mintGuardianPaused[cToken], "mint is paused");
        require(!isCreditAccount(minter, cToken), "credit account cannot mint");

        if (!isMarketListed(cToken)) {
            return uint256(Error.MARKET_NOT_LISTED);
        }

        uint256 supplyCap = supplyCaps[cToken];
        // Supply cap of 0 corresponds to unlimited supplying
        if (supplyCap != 0) {
            uint256 totalCash = CToken(cToken).getCash();
            uint256 totalBorrows = CToken(cToken).totalBorrows();
            uint256 totalReserves = CToken(cToken).totalReserves();
            // totalSupplies = totalCash + totalBorrows - totalReserves
            (MathError mathErr, uint256 totalSupplies) = addThenSubUInt(totalCash, totalBorrows, totalReserves);
            require(mathErr == MathError.NO_ERROR, "totalSupplies failed");

            uint256 nextTotalSupplies = add_(totalSupplies, mintAmount);
            require(nextTotalSupplies < supplyCap, "market supply cap reached");
        }

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Validates mint and reverts on rejection. May emit logs.
     * @param cToken Asset being minted
     * @param minter The address minting the tokens
     * @param actualMintAmount The amount of the underlying asset being minted
     * @param mintTokens The number of tokens being minted
     */
    function mintVerify(
        address cToken,
        address minter,
        uint256 actualMintAmount,
        uint256 mintTokens
    ) external {
        // Shh - currently unused
        cToken;
        minter;
        actualMintAmount;
        mintTokens;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            closeFactorMantissa = closeFactorMantissa;
        }
    }

    /**
     * @notice Checks if the account should be allowed to redeem tokens in the given market
     * @param cToken The market to verify the redeem against
     * @param redeemer The account which would redeem the tokens
     * @param redeemTokens The number of cTokens to exchange for the underlying asset in the market
     * @return 0 if the redeem is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
     */
    function redeemAllowed(
        address cToken,
        address redeemer,
        uint256 redeemTokens
    ) external returns (uint256) {
        return redeemAllowedInternal(cToken, redeemer, redeemTokens);
    }

    function redeemAllowedInternal(
        address cToken,
        address redeemer,
        uint256 redeemTokens
    ) internal view returns (uint256) {
        if (!isMarketListed(cToken)) {
            return uint256(Error.MARKET_NOT_LISTED);
        }

        /* If the redeemer is not 'in' the market, then we can bypass the liquidity check */
        if (!markets[cToken].accountMembership[redeemer]) {
            return uint256(Error.NO_ERROR);
        }

        /* Otherwise, perform a hypothetical liquidity check to guard against shortfall */
        (Error err, , uint256 shortfall) = getHypotheticalAccountLiquidityInternal(
            redeemer,
            CToken(cToken),
            redeemTokens,
            0
        );
        if (err != Error.NO_ERROR) {
            return uint256(err);
        }
        if (shortfall > 0) {
            return uint256(Error.INSUFFICIENT_LIQUIDITY);
        }

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Validates redeem and reverts on rejection. May emit logs.
     * @param cToken Asset being redeemed
     * @param redeemer The address redeeming the tokens
     * @param redeemAmount The amount of the underlying asset being redeemed
     * @param redeemTokens The number of tokens being redeemed
     */
    function redeemVerify(
        address cToken,
        address redeemer,
        uint256 redeemAmount,
        uint256 redeemTokens
    ) external {
        // Shh - currently unused
        cToken;
        redeemer;

        // Require tokens is zero or amount is also zero
        if (redeemTokens == 0 && redeemAmount > 0) {
            revert("redeemTokens zero");
        }
    }

    /**
     * @notice Checks if the account should be allowed to borrow the underlying asset of the given market
     * @param cToken The market to verify the borrow against
     * @param borrower The account which would borrow the asset
     * @param borrowAmount The amount of underlying the account would borrow
     * @return 0 if the borrow is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
     */
    function borrowAllowed(
        address cToken,
        address borrower,
        uint256 borrowAmount
    ) external returns (uint256) {
        // Pausing is a very serious situation - we revert to sound the alarms
        require(!borrowGuardianPaused[cToken], "borrow is paused");

        if (!isMarketListed(cToken)) {
            return uint256(Error.MARKET_NOT_LISTED);
        }

        if (!markets[cToken].accountMembership[borrower]) {
            // only cTokens may call borrowAllowed if borrower not in market
            require(msg.sender == cToken, "sender must be cToken");

            // attempt to add borrower to the market
            Error err = addToMarketInternal(CToken(cToken), borrower);
            if (err != Error.NO_ERROR) {
                return uint256(err);
            }

            // it should be impossible to break the important invariant
            assert(markets[cToken].accountMembership[borrower]);
        }

        if (oracle.getUnderlyingPrice(CToken(cToken)) == 0) {
            return uint256(Error.PRICE_ERROR);
        }

        uint256 borrowCap = borrowCaps[cToken];
        // Borrow cap of 0 corresponds to unlimited borrowing
        if (borrowCap != 0) {
            uint256 totalBorrows = CToken(cToken).totalBorrows();
            uint256 nextTotalBorrows = add_(totalBorrows, borrowAmount);
            require(nextTotalBorrows < borrowCap, "market borrow cap reached");
        }

        (Error err, , uint256 shortfall) = getHypotheticalAccountLiquidityInternal(
            borrower,
            CToken(cToken),
            0,
            borrowAmount
        );
        if (err != Error.NO_ERROR) {
            return uint256(err);
        }
        if (shortfall > 0) {
            return uint256(Error.INSUFFICIENT_LIQUIDITY);
        }

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Validates borrow and reverts on rejection. May emit logs.
     * @param cToken Asset whose underlying is being borrowed
     * @param borrower The address borrowing the underlying
     * @param borrowAmount The amount of the underlying asset requested to borrow
     */
    function borrowVerify(
        address cToken,
        address borrower,
        uint256 borrowAmount
    ) external {
        // Shh - currently unused
        cToken;
        borrower;
        borrowAmount;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            closeFactorMantissa = closeFactorMantissa;
        }
    }

    /**
     * @notice Checks if the account should be allowed to repay a borrow in the given market
     * @param cToken The market to verify the repay against
     * @param payer The account which would repay the asset
     * @param borrower The account which would borrowed the asset
     * @param repayAmount The amount of the underlying asset the account would repay
     * @return 0 if the repay is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
     */
    function repayBorrowAllowed(
        address cToken,
        address payer,
        address borrower,
        uint256 repayAmount
    ) external returns (uint256) {
        // Shh - currently unused
        repayAmount;

        if (!isMarketListed(cToken)) {
            return uint256(Error.MARKET_NOT_LISTED);
        }

        if (isCreditAccount(borrower, cToken)) {
            require(borrower == payer, "cannot repay on behalf of credit account");
        }

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Validates repayBorrow and reverts on rejection. May emit logs.
     * @param cToken Asset being repaid
     * @param payer The address repaying the borrow
     * @param borrower The address of the borrower
     * @param actualRepayAmount The amount of underlying being repaid
     */
    function repayBorrowVerify(
        address cToken,
        address payer,
        address borrower,
        uint256 actualRepayAmount,
        uint256 borrowerIndex
    ) external {
        // Shh - currently unused
        cToken;
        payer;
        borrower;
        actualRepayAmount;
        borrowerIndex;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            closeFactorMantissa = closeFactorMantissa;
        }
    }

    /**
     * @notice Checks if the liquidation should be allowed to occur
     * @param cTokenBorrowed Asset which was borrowed by the borrower
     * @param cTokenCollateral Asset which was used as collateral and will be seized
     * @param liquidator The address repaying the borrow and seizing the collateral
     * @param borrower The address of the borrower
     * @param repayAmount The amount of underlying being repaid
     */
    function liquidateBorrowAllowed(
        address cTokenBorrowed,
        address cTokenCollateral,
        address liquidator,
        address borrower,
        uint256 repayAmount
    ) external returns (uint256) {
        require(!isCreditAccount(borrower, cTokenBorrowed), "cannot liquidate credit account");

        // Shh - currently unused
        liquidator;

        if (!isMarketListed(cTokenBorrowed) || !isMarketListed(cTokenCollateral)) {
            return uint256(Error.MARKET_NOT_LISTED);
        }

        /* The borrower must have shortfall in order to be liquidatable */
        (Error err, , uint256 shortfall) = getAccountLiquidityInternal(borrower);
        if (err != Error.NO_ERROR) {
            return uint256(err);
        }
        if (shortfall == 0) {
            return uint256(Error.INSUFFICIENT_SHORTFALL);
        }

        /* The liquidator may not repay more than what is allowed by the closeFactor */
        uint256 borrowBalance = CToken(cTokenBorrowed).borrowBalanceStored(borrower);
        uint256 maxClose = mul_ScalarTruncate(Exp({mantissa: closeFactorMantissa}), borrowBalance);
        if (repayAmount > maxClose) {
            return uint256(Error.TOO_MUCH_REPAY);
        }

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Validates liquidateBorrow and reverts on rejection. May emit logs.
     * @param cTokenBorrowed Asset which was borrowed by the borrower
     * @param cTokenCollateral Asset which was used as collateral and will be seized
     * @param liquidator The address repaying the borrow and seizing the collateral
     * @param borrower The address of the borrower
     * @param actualRepayAmount The amount of underlying being repaid
     */
    function liquidateBorrowVerify(
        address cTokenBorrowed,
        address cTokenCollateral,
        address liquidator,
        address borrower,
        uint256 actualRepayAmount,
        uint256 seizeTokens
    ) external {
        // Shh - currently unused
        cTokenBorrowed;
        cTokenCollateral;
        liquidator;
        borrower;
        actualRepayAmount;
        seizeTokens;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            closeFactorMantissa = closeFactorMantissa;
        }
    }

    /**
     * @notice Checks if the seizing of assets should be allowed to occur
     * @param cTokenCollateral Asset which was used as collateral and will be seized
     * @param cTokenBorrowed Asset which was borrowed by the borrower
     * @param liquidator The address repaying the borrow and seizing the collateral
     * @param borrower The address of the borrower
     * @param seizeTokens The number of collateral tokens to seize
     */
    function seizeAllowed(
        address cTokenCollateral,
        address cTokenBorrowed,
        address liquidator,
        address borrower,
        uint256 seizeTokens
    ) external returns (uint256) {
        // Pausing is a very serious situation - we revert to sound the alarms
        require(!seizeGuardianPaused, "seize is paused");
        require(!isCreditAccount(borrower, cTokenBorrowed), "cannot sieze from credit account");

        // Shh - currently unused
        liquidator;
        seizeTokens;

        if (!isMarketListed(cTokenCollateral) || !isMarketListed(cTokenBorrowed)) {
            return uint256(Error.MARKET_NOT_LISTED);
        }

        if (CToken(cTokenCollateral).comptroller() != CToken(cTokenBorrowed).comptroller()) {
            return uint256(Error.COMPTROLLER_MISMATCH);
        }

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Validates seize and reverts on rejection. May emit logs.
     * @param cTokenCollateral Asset which was used as collateral and will be seized
     * @param cTokenBorrowed Asset which was borrowed by the borrower
     * @param liquidator The address repaying the borrow and seizing the collateral
     * @param borrower The address of the borrower
     * @param seizeTokens The number of collateral tokens to seize
     */
    function seizeVerify(
        address cTokenCollateral,
        address cTokenBorrowed,
        address liquidator,
        address borrower,
        uint256 seizeTokens
    ) external {
        // Shh - currently unused
        cTokenCollateral;
        cTokenBorrowed;
        liquidator;
        borrower;
        seizeTokens;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            closeFactorMantissa = closeFactorMantissa;
        }
    }

    /**
     * @notice Checks if the account should be allowed to transfer tokens in the given market
     * @param cToken The market to verify the transfer against
     * @param src The account which sources the tokens
     * @param dst The account which receives the tokens
     * @param transferTokens The number of cTokens to transfer
     * @return 0 if the transfer is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
     */
    function transferAllowed(
        address cToken,
        address src,
        address dst,
        uint256 transferTokens
    ) external returns (uint256) {
        // Pausing is a very serious situation - we revert to sound the alarms
        require(!transferGuardianPaused, "transfer is paused");
        require(!isCreditAccount(dst, cToken), "cannot transfer to a credit account");

        // Shh - currently unused
        dst;

        // Currently the only consideration is whether or not
        //  the src is allowed to redeem this many tokens
        return redeemAllowedInternal(cToken, src, transferTokens);
    }

    /**
     * @notice Validates transfer and reverts on rejection. May emit logs.
     * @param cToken Asset being transferred
     * @param src The account which sources the tokens
     * @param dst The account which receives the tokens
     * @param transferTokens The number of cTokens to transfer
     */
    function transferVerify(
        address cToken,
        address src,
        address dst,
        uint256 transferTokens
    ) external {
        // Shh - currently unused
        cToken;
        src;
        dst;
        transferTokens;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            closeFactorMantissa = closeFactorMantissa;
        }
    }

    /**
     * @notice Checks if the account should be allowed to transfer tokens in the given market
     * @param cToken The market to verify the transfer against
     * @param receiver The account which receives the tokens
     * @param amount The amount of the tokens
     * @param params The other parameters
     */

    function flashloanAllowed(
        address cToken,
        address receiver,
        uint256 amount,
        bytes calldata params
    ) external view returns (bool) {
        return !flashloanGuardianPaused[cToken];
    }

    /**
     * @notice Update CToken's version.
     * @param cToken Version of the asset being updated
     * @param newVersion The new version
     */
    function updateCTokenVersion(address cToken, Version newVersion) external {
        require(msg.sender == cToken, "only cToken could update its version");

        // This function will be called when a new CToken implementation becomes active.
        // If a new CToken is newly created, this market is not listed yet. The version of
        // this market will be taken care of when calling `_supportMarket`.
        if (isMarketListed(cToken)) {
            Version oldVersion = markets[cToken].version;
            markets[cToken].version = newVersion;

            emit NewCTokenVersion(CToken(cToken), oldVersion, newVersion);
        }
    }

    /**
     * @notice Check if the account is a credit account
     * @param account The account needs to be checked
     * @param cToken The market
     * @return The account is a credit account or not
     */
    function isCreditAccount(address account, address cToken) public view returns (bool) {
        return creditLimits[account][cToken] > 0;
    }

    /*** Liquidity/Liquidation Calculations ***/

    /**
     * @dev Local vars for avoiding stack-depth limits in calculating account liquidity.
     *  Note that `cTokenBalance` is the number of cTokens the account owns in the market,
     *  whereas `borrowBalance` is the amount of underlying that the account has borrowed.
     */
    struct AccountLiquidityLocalVars {
        uint256 sumCollateral;
        uint256 sumBorrowPlusEffects;
        uint256 cTokenBalance;
        uint256 borrowBalance;
        uint256 exchangeRateMantissa;
        uint256 oraclePriceMantissa;
        Exp collateralFactor;
        Exp exchangeRate;
        Exp oraclePrice;
        Exp tokensToDenom;
    }

    /**
     * @notice Determine the current account liquidity wrt collateral requirements
     * @return (possible error code (semi-opaque),
                account liquidity in excess of collateral requirements,
     *          account shortfall below collateral requirements)
     */
    function getAccountLiquidity(address account)
        public
        view
        returns (
            uint256,
            uint256,
            uint256
        )
    {
        (Error err, uint256 liquidity, uint256 shortfall) = getHypotheticalAccountLiquidityInternal(
            account,
            CToken(0),
            0,
            0
        );

        return (uint256(err), liquidity, shortfall);
    }

    /**
     * @notice Determine the current account liquidity wrt collateral requirements
     * @return (possible error code,
                account liquidity in excess of collateral requirements,
     *          account shortfall below collateral requirements)
     */
    function getAccountLiquidityInternal(address account)
        internal
        view
        returns (
            Error,
            uint256,
            uint256
        )
    {
        return getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);
    }

    /**
     * @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed
     * @param cTokenModify The market to hypothetically redeem/borrow in
     * @param account The account to determine liquidity for
     * @param redeemTokens The number of tokens to hypothetically redeem
     * @param borrowAmount The amount of underlying to hypothetically borrow
     * @return (possible error code (semi-opaque),
                hypothetical account liquidity in excess of collateral requirements,
     *          hypothetical account shortfall below collateral requirements)
     */
    function getHypotheticalAccountLiquidity(
        address account,
        address cTokenModify,
        uint256 redeemTokens,
        uint256 borrowAmount
    )
        public
        view
        returns (
            uint256,
            uint256,
            uint256
        )
    {
        (Error err, uint256 liquidity, uint256 shortfall) = getHypotheticalAccountLiquidityInternal(
            account,
            CToken(cTokenModify),
            redeemTokens,
            borrowAmount
        );
        return (uint256(err), liquidity, shortfall);
    }

    /**
     * @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed
     * @param cTokenModify The market to hypothetically redeem/borrow in
     * @param account The account to determine liquidity for
     * @param redeemTokens The number of tokens to hypothetically redeem
     * @param borrowAmount The amount of underlying to hypothetically borrow
     * @dev Note that we calculate the exchangeRateStored for each collateral cToken using stored data,
     *  without calculating accumulated interest.
     * @return (possible error code,
                hypothetical account liquidity in excess of collateral requirements,
     *          hypothetical account shortfall below collateral requirements)
     */
    function getHypotheticalAccountLiquidityInternal(
        address account,
        CToken cTokenModify,
        uint256 redeemTokens,
        uint256 borrowAmount
    )
        internal
        view
        returns (
            Error,
            uint256,
            uint256
        )
    {
        AccountLiquidityLocalVars memory vars; // Holds all our calculation results
        uint256 oErr;

        // For each asset the account is in
        CToken[] memory assets = accountAssets[account];
        for (uint256 i = 0; i < assets.length; i++) {
            CToken asset = assets[i];

            // Read the balances and exchange rate from the cToken
            (oErr, vars.cTokenBalance, vars.borrowBalance, vars.exchangeRateMantissa) = asset.getAccountSnapshot(
                account
            );
            if (oErr != 0) {
                // semi-opaque error code, we assume NO_ERROR == 0 is invariant between upgrades
                return (Error.SNAPSHOT_ERROR, 0, 0);
            }

            // Once a market's credit limit is set, the account's collateral won't be considered anymore.
            uint256 creditLimit = creditLimits[account][address(asset)];
            if (creditLimit > 0) {
                // The market's credit limit should be always greater than its borrow balance and the borrow balance won't be added to sumBorrowPlusEffects.
                require(creditLimit >= vars.borrowBalance, "insufficient credit limit");

                if (asset == cTokenModify) {
                    // borrowAmount must not exceed the credit limit.
                    require(creditLimit >= add_(vars.borrowBalance, borrowAmount), "insufficient credit limit");
                }
            } else {
                // Unlike compound protocol, getUnderlyingPrice is relatively expensive because we use ChainLink as our primary price feed.
                // If user has no supply / borrow balance on this asset, and user is not redeeming / borrowing this asset, skip it.
                if (vars.cTokenBalance == 0 && vars.borrowBalance == 0 && asset != cTokenModify) {
                    continue;
                }

                vars.collateralFactor = Exp({mantissa: markets[address(asset)].collateralFactorMantissa});
                vars.exchangeRate = Exp({mantissa: vars.exchangeRateMantissa});

                // Get the normalized price of the asset
                vars.oraclePriceMantissa = oracle.getUnderlyingPrice(asset);
                if (vars.oraclePriceMantissa == 0) {
                    return (Error.PRICE_ERROR, 0, 0);
                }
                vars.oraclePrice = Exp({mantissa: vars.oraclePriceMantissa});

                // Pre-compute a conversion factor from tokens -> ether (normalized price value)
                vars.tokensToDenom = mul_(mul_(vars.collateralFactor, vars.exchangeRate), vars.oraclePrice);

                // sumCollateral += tokensToDenom * cTokenBalance
                vars.sumCollateral = mul_ScalarTruncateAddUInt(
                    vars.tokensToDenom,
                    vars.cTokenBalance,
                    vars.sumCollateral
                );

                // sumBorrowPlusEffects += oraclePrice * borrowBalance
                vars.sumBorrowPlusEffects = mul_ScalarTruncateAddUInt(
                    vars.oraclePrice,
                    vars.borrowBalance,
                    vars.sumBorrowPlusEffects
                );

                // Calculate effects of interacting with cTokenModify
                if (asset == cTokenModify) {
                    // redeem effect
                    // sumBorrowPlusEffects += tokensToDenom * redeemTokens
                    vars.sumBorrowPlusEffects = mul_ScalarTruncateAddUInt(
                        vars.tokensToDenom,
                        redeemTokens,
                        vars.sumBorrowPlusEffects
                    );

                    // borrow effect
                    // sumBorrowPlusEffects += oraclePrice * borrowAmount
                    vars.sumBorrowPlusEffects = mul_ScalarTruncateAddUInt(
                        vars.oraclePrice,
                        borrowAmount,
                        vars.sumBorrowPlusEffects
                    );
                }
            }
        }

        // These are safe, as the underflow condition is checked first
        if (vars.sumCollateral > vars.sumBorrowPlusEffects) {
            return (Error.NO_ERROR, vars.sumCollateral - vars.sumBorrowPlusEffects, 0);
        } else {
            return (Error.NO_ERROR, 0, vars.sumBorrowPlusEffects - vars.sumCollateral);
        }
    }

    /**
     * @notice Calculate number of tokens of collateral asset to seize given an underlying amount
     * @dev Used in liquidation (called in cToken.liquidateBorrowFresh)
     * @param cTokenBorrowed The address of the borrowed cToken
     * @param cTokenCollateral The address of the collateral cToken
     * @param actualRepayAmount The amount of cTokenBorrowed underlying to convert into cTokenCollateral tokens
     * @return (errorCode, number of cTokenCollateral tokens to be seized in a liquidation)
     */
    function liquidateCalculateSeizeTokens(
        address cTokenBorrowed,
        address cTokenCollateral,
        uint256 actualRepayAmount
    ) external view returns (uint256, uint256) {
        /* Read oracle prices for borrowed and collateral markets */
        uint256 priceBorrowedMantissa = oracle.getUnderlyingPrice(CToken(cTokenBorrowed));
        uint256 priceCollateralMantissa = oracle.getUnderlyingPrice(CToken(cTokenCollateral));
        if (priceBorrowedMantissa == 0 || priceCollateralMantissa == 0) {
            return (uint256(Error.PRICE_ERROR), 0);
        }

        /*
         * Get the exchange rate and calculate the number of collateral tokens to seize:
         *  seizeAmount = actualRepayAmount * liquidationIncentive * priceBorrowed / priceCollateral
         *  seizeTokens = seizeAmount / exchangeRate
         *   = actualRepayAmount * (liquidationIncentive * priceBorrowed) / (priceCollateral * exchangeRate)
         */
        uint256 exchangeRateMantissa = CToken(cTokenCollateral).exchangeRateStored(); // Note: reverts on error
        Exp memory numerator = mul_(
            Exp({mantissa: liquidationIncentiveMantissa}),
            Exp({mantissa: priceBorrowedMantissa})
        );
        Exp memory denominator = mul_(Exp({mantissa: priceCollateralMantissa}), Exp({mantissa: exchangeRateMantissa}));
        Exp memory ratio = div_(numerator, denominator);
        uint256 seizeTokens = mul_ScalarTruncate(ratio, actualRepayAmount);

        return (uint256(Error.NO_ERROR), seizeTokens);
    }

    /*** Admin Functions ***/

    /**
     * @notice Sets a new price oracle for the comptroller
     * @dev Admin function to set a new price oracle
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setPriceOracle(PriceOracle newOracle) public returns (uint256) {
        // Check caller is admin
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_PRICE_ORACLE_OWNER_CHECK);
        }

        // Track the old oracle for the comptroller
        PriceOracle oldOracle = oracle;

        // Set comptroller's oracle to newOracle
        oracle = newOracle;

        // Emit NewPriceOracle(oldOracle, newOracle)
        emit NewPriceOracle(oldOracle, newOracle);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Sets the closeFactor used when liquidating borrows
     * @dev Admin function to set closeFactor
     * @param newCloseFactorMantissa New close factor, scaled by 1e18
     * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
     */
    function _setCloseFactor(uint256 newCloseFactorMantissa) external returns (uint256) {
        // Check caller is admin
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_CLOSE_FACTOR_OWNER_CHECK);
        }

        uint256 oldCloseFactorMantissa = closeFactorMantissa;
        closeFactorMantissa = newCloseFactorMantissa;
        emit NewCloseFactor(oldCloseFactorMantissa, closeFactorMantissa);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Sets the collateralFactor for a market
     * @dev Admin function to set per-market collateralFactor
     * @param cToken The market to set the factor on
     * @param newCollateralFactorMantissa The new collateral factor, scaled by 1e18
     * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
     */
    function _setCollateralFactor(CToken cToken, uint256 newCollateralFactorMantissa) external returns (uint256) {
        // Check caller is admin
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_COLLATERAL_FACTOR_OWNER_CHECK);
        }

        // Verify market is listed
        Market storage market = markets[address(cToken)];
        if (!market.isListed) {
            return fail(Error.MARKET_NOT_LISTED, FailureInfo.SET_COLLATERAL_FACTOR_NO_EXISTS);
        }

        Exp memory newCollateralFactorExp = Exp({mantissa: newCollateralFactorMantissa});

        // Check collateral factor <= 0.9
        Exp memory highLimit = Exp({mantissa: collateralFactorMaxMantissa});
        if (lessThanExp(highLimit, newCollateralFactorExp)) {
            return fail(Error.INVALID_COLLATERAL_FACTOR, FailureInfo.SET_COLLATERAL_FACTOR_VALIDATION);
        }

        // If collateral factor != 0, fail if price == 0
        if (newCollateralFactorMantissa != 0 && oracle.getUnderlyingPrice(cToken) == 0) {
            return fail(Error.PRICE_ERROR, FailureInfo.SET_COLLATERAL_FACTOR_WITHOUT_PRICE);
        }

        // Set market's collateral factor to new collateral factor, remember old value
        uint256 oldCollateralFactorMantissa = market.collateralFactorMantissa;
        market.collateralFactorMantissa = newCollateralFactorMantissa;

        // Emit event with asset, old collateral factor, and new collateral factor
        emit NewCollateralFactor(cToken, oldCollateralFactorMantissa, newCollateralFactorMantissa);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Sets liquidationIncentive
     * @dev Admin function to set liquidationIncentive
     * @param newLiquidationIncentiveMantissa New liquidationIncentive scaled by 1e18
     * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
     */
    function _setLiquidationIncentive(uint256 newLiquidationIncentiveMantissa) external returns (uint256) {
        // Check caller is admin
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_LIQUIDATION_INCENTIVE_OWNER_CHECK);
        }

        // Save current value for use in log
        uint256 oldLiquidationIncentiveMantissa = liquidationIncentiveMantissa;

        // Set liquidation incentive to new incentive
        liquidationIncentiveMantissa = newLiquidationIncentiveMantissa;

        // Emit event with old incentive, new incentive
        emit NewLiquidationIncentive(oldLiquidationIncentiveMantissa, newLiquidationIncentiveMantissa);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Add the market to the markets mapping and set it as listed
     * @dev Admin function to set isListed and add support for the market
     * @param cToken The address of the market (token) to list
     * @param version The version of the market (token)
     * @return uint 0=success, otherwise a failure. (See enum Error for details)
     */
    function _supportMarket(CToken cToken, Version version) external returns (uint256) {
        require(msg.sender == admin, "only admin may support market");
        require(!isMarketListed(address(cToken)), "market already listed");

        cToken.isCToken(); // Sanity check to make sure its really a CToken

        markets[address(cToken)] = Market({isListed: true, collateralFactorMantissa: 0, version: version});

        _addMarketInternal(address(cToken));

        emit MarketListed(cToken);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Remove the market from the markets mapping
     * @param cToken The address of the market (token) to delist
     */
    function _delistMarket(CToken cToken) external {
        require(msg.sender == admin, "only admin may delist market");
        require(isMarketListed(address(cToken)), "market not listed");
        require(cToken.totalSupply() == 0, "market not empty");

        cToken.isCToken(); // Sanity check to make sure its really a CToken

        delete markets[address(cToken)];

        for (uint256 i = 0; i < allMarkets.length; i++) {
            if (allMarkets[i] == cToken) {
                allMarkets[i] = allMarkets[allMarkets.length - 1];
                delete allMarkets[allMarkets.length - 1];
                allMarkets.length--;
                break;
            }
        }

        emit MarketDelisted(cToken);
    }

    function _addMarketInternal(address cToken) internal {
        for (uint256 i = 0; i < allMarkets.length; i++) {
            require(allMarkets[i] != CToken(cToken), "market already added");
        }
        allMarkets.push(CToken(cToken));
    }

    /**
     * @notice Admin function to change the Supply Cap Guardian
     * @param newSupplyCapGuardian The address of the new Supply Cap Guardian
     */
    function _setSupplyCapGuardian(address newSupplyCapGuardian) external {
        require(msg.sender == admin, "only admin can set supply cap guardian");

        // Save current value for inclusion in log
        address oldSupplyCapGuardian = supplyCapGuardian;

        // Store supplyCapGuardian with value newSupplyCapGuardian
        supplyCapGuardian = newSupplyCapGuardian;

        // Emit NewSupplyCapGuardian(OldSupplyCapGuardian, NewSupplyCapGuardian)
        emit NewSupplyCapGuardian(oldSupplyCapGuardian, newSupplyCapGuardian);
    }

    /**
     * @notice Set the given supply caps for the given cToken markets. Supplying that brings total supplys to or above supply cap will revert.
     * @dev Admin or supplyCapGuardian function to set the supply caps. A supply cap of 0 corresponds to unlimited supplying. If the total borrows
     *      already exceeded the cap, it will prevent anyone to borrow.
     * @param cTokens The addresses of the markets (tokens) to change the supply caps for
     * @param newSupplyCaps The new supply cap values in underlying to be set. A value of 0 corresponds to unlimited supplying.
     */
    function _setMarketSupplyCaps(CToken[] calldata cTokens, uint256[] calldata newSupplyCaps) external {
        require(
            msg.sender == admin || msg.sender == supplyCapGuardian,
            "only admin or supply cap guardian can set supply caps"
        );

        uint256 numMarkets = cTokens.length;
        uint256 numSupplyCaps = newSupplyCaps.length;

        require(numMarkets != 0 && numMarkets == numSupplyCaps, "invalid input");

        for (uint256 i = 0; i < numMarkets; i++) {
            supplyCaps[address(cTokens[i])] = newSupplyCaps[i];
            emit NewSupplyCap(cTokens[i], newSupplyCaps[i]);
        }
    }

    /**
     * @notice Set the given borrow caps for the given cToken markets. Borrowing that brings total borrows to or above borrow cap will revert.
     * @dev Admin or borrowCapGuardian function to set the borrow caps. A borrow cap of 0 corresponds to unlimited borrowing. If the total supplies
     *      already exceeded the cap, it will prevent anyone to mint.
     * @param cTokens The addresses of the markets (tokens) to change the borrow caps for
     * @param newBorrowCaps The new borrow cap values in underlying to be set. A value of 0 corresponds to unlimited borrowing.
     */
    function _setMarketBorrowCaps(CToken[] calldata cTokens, uint256[] calldata newBorrowCaps) external {
        require(
            msg.sender == admin || msg.sender == borrowCapGuardian,
            "only admin or borrow cap guardian can set borrow caps"
        );

        uint256 numMarkets = cTokens.length;
        uint256 numBorrowCaps = newBorrowCaps.length;

        require(numMarkets != 0 && numMarkets == numBorrowCaps, "invalid input");

        for (uint256 i = 0; i < numMarkets; i++) {
            borrowCaps[address(cTokens[i])] = newBorrowCaps[i];
            emit NewBorrowCap(cTokens[i], newBorrowCaps[i]);
        }
    }

    /**
     * @notice Admin function to change the Borrow Cap Guardian
     * @param newBorrowCapGuardian The address of the new Borrow Cap Guardian
     */
    function _setBorrowCapGuardian(address newBorrowCapGuardian) external {
        require(msg.sender == admin, "only admin can set borrow cap guardian");

        // Save current value for inclusion in log
        address oldBorrowCapGuardian = borrowCapGuardian;

        // Store borrowCapGuardian with value newBorrowCapGuardian
        borrowCapGuardian = newBorrowCapGuardian;

        // Emit NewBorrowCapGuardian(OldBorrowCapGuardian, NewBorrowCapGuardian)
        emit NewBorrowCapGuardian(oldBorrowCapGuardian, newBorrowCapGuardian);
    }

    /**
     * @notice Admin function to change the Pause Guardian
     * @param newPauseGuardian The address of the new Pause Guardian
     * @return uint 0=success, otherwise a failure. (See enum Error for details)
     */
    function _setPauseGuardian(address newPauseGuardian) public returns (uint256) {
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_PAUSE_GUARDIAN_OWNER_CHECK);
        }

        // Save current value for inclusion in log
        address oldPauseGuardian = pauseGuardian;

        // Store pauseGuardian with value newPauseGuardian
        pauseGuardian = newPauseGuardian;

        // Emit NewPauseGuardian(OldPauseGuardian, NewPauseGuardian)
        emit NewPauseGuardian(oldPauseGuardian, pauseGuardian);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Admin function to set the liquidity mining module address
     * @dev Removing the liquidity mining module address could cause the inconsistency in the LM module.
     * @param newLiquidityMining The address of the new liquidity mining module
     */
    function _setLiquidityMining(address newLiquidityMining) external {
        require(msg.sender == admin, "only admin can set liquidity mining module");
        require(LiquidityMiningInterface(newLiquidityMining).comptroller() == address(this), "mismatch comptroller");

        // Save current value for inclusion in log
        address oldLiquidityMining = liquidityMining;

        // Store pauseGuardian with value newLiquidityMining
        liquidityMining = newLiquidityMining;

        // Emit NewLiquidityMining(OldLiquidityMining, NewLiquidityMining)
        emit NewLiquidityMining(oldLiquidityMining, liquidityMining);
    }

    function _setMintPaused(CToken cToken, bool state) public returns (bool) {
        require(isMarketListed(address(cToken)), "cannot pause a market that is not listed");
        require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause");
        require(msg.sender == admin || state == true, "only admin can unpause");

        mintGuardianPaused[address(cToken)] = state;
        emit ActionPaused(cToken, "Mint", state);
        return state;
    }

    function _setBorrowPaused(CToken cToken, bool state) public returns (bool) {
        require(isMarketListed(address(cToken)), "cannot pause a market that is not listed");
        require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause");
        require(msg.sender == admin || state == true, "only admin can unpause");

        borrowGuardianPaused[address(cToken)] = state;
        emit ActionPaused(cToken, "Borrow", state);
        return state;
    }

    function _setFlashloanPaused(CToken cToken, bool state) public returns (bool) {
        require(isMarketListed(address(cToken)), "cannot pause a market that is not listed");
        require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause");
        require(msg.sender == admin || state == true, "only admin can unpause");

        flashloanGuardianPaused[address(cToken)] = state;
        emit ActionPaused(cToken, "Flashloan", state);
        return state;
    }

    function _setTransferPaused(bool state) public returns (bool) {
        require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause");
        require(msg.sender == admin || state == true, "only admin can unpause");

        transferGuardianPaused = state;
        emit ActionPaused("Transfer", state);
        return state;
    }

    function _setSeizePaused(bool state) public returns (bool) {
        require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause");
        require(msg.sender == admin || state == true, "only admin can unpause");

        seizeGuardianPaused = state;
        emit ActionPaused("Seize", state);
        return state;
    }

    function _become(Unitroller unitroller) public {
        require(msg.sender == unitroller.admin(), "only unitroller admin can change brains");
        require(unitroller._acceptImplementation() == 0, "change not authorized");
    }

    /**
     * @notice Sets protocol's credit limit by market
     * @param protocol The address of the protocol
     * @param market The market
     * @param creditLimit The credit limit
     */
    function _setCreditLimit(
        address protocol,
        address market,
        uint256 creditLimit
    ) public {
        require(msg.sender == admin, "only admin can set protocol credit limit");
        require(addToMarketInternal(CToken(market), protocol) == Error.NO_ERROR, "invalid market");

        creditLimits[protocol][market] = creditLimit;
        emit CreditLimitChanged(protocol, market, creditLimit);
    }

    /**
     * @notice Return all of the markets
     * @dev The automatic getter may be used to access an individual market.
     * @return The list of market addresses
     */
    function getAllMarkets() public view returns (CToken[] memory) {
        return allMarkets;
    }

    function getBlockNumber() public view returns (uint256) {
        return block.timestamp;
    }
}

File 7 of 20 : ComptrollerInterface.sol
pragma solidity ^0.5.16;

import "./CToken.sol";
import "./ComptrollerStorage.sol";

contract ComptrollerInterface {
    /// @notice Indicator that this is a Comptroller contract (for inspection)
    bool public constant isComptroller = true;

    /*** Assets You Are In ***/

    function enterMarkets(address[] calldata cTokens) external returns (uint256[] memory);

    function exitMarket(address cToken) external returns (uint256);

    /*** Policy Hooks ***/

    function mintAllowed(
        address cToken,
        address minter,
        uint256 mintAmount
    ) external returns (uint256);

    function mintVerify(
        address cToken,
        address minter,
        uint256 mintAmount,
        uint256 mintTokens
    ) external;

    function redeemAllowed(
        address cToken,
        address redeemer,
        uint256 redeemTokens
    ) external returns (uint256);

    function redeemVerify(
        address cToken,
        address redeemer,
        uint256 redeemAmount,
        uint256 redeemTokens
    ) external;

    function borrowAllowed(
        address cToken,
        address borrower,
        uint256 borrowAmount
    ) external returns (uint256);

    function borrowVerify(
        address cToken,
        address borrower,
        uint256 borrowAmount
    ) external;

    function repayBorrowAllowed(
        address cToken,
        address payer,
        address borrower,
        uint256 repayAmount
    ) external returns (uint256);

    function repayBorrowVerify(
        address cToken,
        address payer,
        address borrower,
        uint256 repayAmount,
        uint256 borrowerIndex
    ) external;

    function liquidateBorrowAllowed(
        address cTokenBorrowed,
        address cTokenCollateral,
        address liquidator,
        address borrower,
        uint256 repayAmount
    ) external returns (uint256);

    function liquidateBorrowVerify(
        address cTokenBorrowed,
        address cTokenCollateral,
        address liquidator,
        address borrower,
        uint256 repayAmount,
        uint256 seizeTokens
    ) external;

    function seizeAllowed(
        address cTokenCollateral,
        address cTokenBorrowed,
        address liquidator,
        address borrower,
        uint256 seizeTokens
    ) external returns (uint256);

    function seizeVerify(
        address cTokenCollateral,
        address cTokenBorrowed,
        address liquidator,
        address borrower,
        uint256 seizeTokens
    ) external;

    function transferAllowed(
        address cToken,
        address src,
        address dst,
        uint256 transferTokens
    ) external returns (uint256);

    function transferVerify(
        address cToken,
        address src,
        address dst,
        uint256 transferTokens
    ) external;

    /*** Liquidity/Liquidation Calculations ***/

    function liquidateCalculateSeizeTokens(
        address cTokenBorrowed,
        address cTokenCollateral,
        uint256 repayAmount
    ) external view returns (uint256, uint256);
}

interface ComptrollerInterfaceExtension {
    function checkMembership(address account, CToken cToken) external view returns (bool);

    function updateCTokenVersion(address cToken, ComptrollerV1Storage.Version version) external;

    function flashloanAllowed(
        address cToken,
        address receiver,
        uint256 amount,
        bytes calldata params
    ) external view returns (bool);
}

File 8 of 20 : ComptrollerStorage.sol
pragma solidity ^0.5.16;

import "./CToken.sol";
import "./PriceOracle/PriceOracle.sol";

contract UnitrollerAdminStorage {
    /**
     * @notice Administrator for this contract
     */
    address public admin;

    /**
     * @notice Pending administrator for this contract
     */
    address public pendingAdmin;

    /**
     * @notice Active brains of Unitroller
     */
    address public comptrollerImplementation;

    /**
     * @notice Pending brains of Unitroller
     */
    address public pendingComptrollerImplementation;
}

contract ComptrollerV1Storage is UnitrollerAdminStorage {
    /**
     * @notice Oracle which gives the price of any given asset
     */
    PriceOracle public oracle;

    /**
     * @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow
     */
    uint256 public closeFactorMantissa;

    /**
     * @notice Multiplier representing the discount on collateral that a liquidator receives
     */
    uint256 public liquidationIncentiveMantissa;

    /**
     * @notice Per-account mapping of "assets you are in"
     */
    mapping(address => CToken[]) public accountAssets;

    enum Version {
        VANILLA,
        COLLATERALCAP,
        WRAPPEDNATIVE
    }

    struct Market {
        /// @notice Whether or not this market is listed
        bool isListed;
        /**
         * @notice Multiplier representing the most one can borrow against their collateral in this market.
         *  For instance, 0.9 to allow borrowing 90% of collateral value.
         *  Must be between 0 and 1, and stored as a mantissa.
         */
        uint256 collateralFactorMantissa;
        /// @notice Per-market mapping of "accounts in this asset"
        mapping(address => bool) accountMembership;
        /// @notice CToken version
        Version version;
    }

    /**
     * @notice Official mapping of cTokens -> Market metadata
     * @dev Used e.g. to determine if a market is supported
     */
    mapping(address => Market) public markets;

    /**
     * @notice The Pause Guardian can pause certain actions as a safety mechanism.
     *  Actions which allow users to remove their own assets cannot be paused.
     *  Liquidation / seizing / transfer can only be paused globally, not by market.
     */
    address public pauseGuardian;
    bool public _mintGuardianPaused;
    bool public _borrowGuardianPaused;
    bool public transferGuardianPaused;
    bool public seizeGuardianPaused;
    mapping(address => bool) public mintGuardianPaused;
    mapping(address => bool) public borrowGuardianPaused;
    mapping(address => bool) public flashloanGuardianPaused;

    /// @notice A list of all markets
    CToken[] public allMarkets;

    // @notice The borrowCapGuardian can set borrowCaps to any number for any market. Lowering the borrow cap could disable borrowing on the given market.
    address public borrowCapGuardian;

    // @notice Borrow caps enforced by borrowAllowed for each cToken address. Defaults to zero which corresponds to unlimited borrowing.
    mapping(address => uint256) public borrowCaps;

    // @notice The supplyCapGuardian can set supplyCaps to any number for any market. Lowering the supply cap could disable supplying to the given market.
    address public supplyCapGuardian;

    // @notice Supply caps enforced by mintAllowed for each cToken address. Defaults to zero which corresponds to unlimited supplying.
    mapping(address => uint256) public supplyCaps;

    // @notice creditLimits allowed specific protocols to borrow and repay specific markets without collateral.
    mapping(address => mapping(address => uint256)) public creditLimits;

    /// @notice liquidityMining the liquidity mining module that handles the LM rewards distribution.
    address public liquidityMining;
}

File 9 of 20 : EIP20Interface.sol
pragma solidity ^0.5.16;

/**
 * @title ERC 20 Token Standard Interface
 *  https://eips.ethereum.org/EIPS/eip-20
 */
interface EIP20Interface {
    function name() external view returns (string memory);

    function symbol() external view returns (string memory);

    function decimals() external view returns (uint8);

    /**
     * @notice Get the total number of tokens in circulation
     * @return The supply of tokens
     */
    function totalSupply() external view returns (uint256);

    /**
     * @notice Gets the balance of the specified address
     * @param owner The address from which the balance will be retrieved
     * @return The balance
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @notice Transfer `amount` tokens from `msg.sender` to `dst`
     * @param dst The address of the destination account
     * @param amount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transfer(address dst, uint256 amount) external returns (bool success);

    /**
     * @notice Transfer `amount` tokens from `src` to `dst`
     * @param src The address of the source account
     * @param dst The address of the destination account
     * @param amount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transferFrom(
        address src,
        address dst,
        uint256 amount
    ) external returns (bool success);

    /**
     * @notice Approve `spender` to transfer up to `amount` from `src`
     * @dev This will overwrite the approval amount for `spender`
     *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
     * @param spender The address of the account which may transfer tokens
     * @param amount The number of tokens that are approved (-1 means infinite)
     * @return Whether or not the approval succeeded
     */
    function approve(address spender, uint256 amount) external returns (bool success);

    /**
     * @notice Get the current allowance from `owner` for `spender`
     * @param owner The address of the account which owns the tokens to be spent
     * @param spender The address of the account which may transfer tokens
     * @return The number of tokens allowed to be spent (-1 means infinite)
     */
    function allowance(address owner, address spender) external view returns (uint256 remaining);

    event Transfer(address indexed from, address indexed to, uint256 amount);
    event Approval(address indexed owner, address indexed spender, uint256 amount);
}

File 10 of 20 : EIP20NonStandardInterface.sol
pragma solidity ^0.5.16;

/**
 * @title EIP20NonStandardInterface
 * @dev Version of ERC20 with no return values for `transfer` and `transferFrom`
 *  See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
 */
interface EIP20NonStandardInterface {
    /**
     * @notice Get the total number of tokens in circulation
     * @return The supply of tokens
     */
    function totalSupply() external view returns (uint256);

    /**
     * @notice Gets the balance of the specified address
     * @param owner The address from which the balance will be retrieved
     * @return The balance
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    ///
    /// !!!!!!!!!!!!!!
    /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification
    /// !!!!!!!!!!!!!!
    ///

    /**
     * @notice Transfer `amount` tokens from `msg.sender` to `dst`
     * @param dst The address of the destination account
     * @param amount The number of tokens to transfer
     */
    function transfer(address dst, uint256 amount) external;

    ///
    /// !!!!!!!!!!!!!!
    /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification
    /// !!!!!!!!!!!!!!
    ///

    /**
     * @notice Transfer `amount` tokens from `src` to `dst`
     * @param src The address of the source account
     * @param dst The address of the destination account
     * @param amount The number of tokens to transfer
     */
    function transferFrom(
        address src,
        address dst,
        uint256 amount
    ) external;

    /**
     * @notice Approve `spender` to transfer up to `amount` from `src`
     * @dev This will overwrite the approval amount for `spender`
     *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
     * @param spender The address of the account which may transfer tokens
     * @param amount The number of tokens that are approved
     * @return Whether or not the approval succeeded
     */
    function approve(address spender, uint256 amount) external returns (bool success);

    /**
     * @notice Get the current allowance from `owner` for `spender`
     * @param owner The address of the account which owns the tokens to be spent
     * @param spender The address of the account which may transfer tokens
     * @return The number of tokens allowed to be spent
     */
    function allowance(address owner, address spender) external view returns (uint256 remaining);

    event Transfer(address indexed from, address indexed to, uint256 amount);
    event Approval(address indexed owner, address indexed spender, uint256 amount);
}

File 11 of 20 : ERC3156FlashBorrowerInterface.sol
pragma solidity ^0.5.16;

interface ERC3156FlashBorrowerInterface {
    /**
     * @dev Receive a flash loan.
     * @param initiator The initiator of the loan.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @param fee The additional amount of tokens to repay.
     * @param data Arbitrary data structure, intended to contain user-defined parameters.
     * @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
     */
    function onFlashLoan(
        address initiator,
        address token,
        uint256 amount,
        uint256 fee,
        bytes calldata data
    ) external returns (bytes32);
}

File 12 of 20 : ERC3156FlashLenderInterface.sol
pragma solidity ^0.5.16;
import "./ERC3156FlashBorrowerInterface.sol";

interface ERC3156FlashLenderInterface {
    /**
     * @dev The amount of currency available to be lent.
     * @param token The loan currency.
     * @return The amount of `token` that can be borrowed.
     */
    function maxFlashLoan(address token) external view returns (uint256);

    /**
     * @dev The fee to be charged for a given loan.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @return The amount of `token` to be charged for the loan, on top of the returned principal.
     */
    function flashFee(address token, uint256 amount) external view returns (uint256);

    /**
     * @dev Initiate a flash loan.
     * @param receiver The receiver of the tokens in the loan, and the receiver of the callback.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @param data Arbitrary data structure, intended to contain user-defined parameters.
     */
    function flashLoan(
        ERC3156FlashBorrowerInterface receiver,
        address token,
        uint256 amount,
        bytes calldata data
    ) external returns (bool);
}

File 13 of 20 : ErrorReporter.sol
pragma solidity ^0.5.16;

contract ComptrollerErrorReporter {
    enum Error {
        NO_ERROR,
        UNAUTHORIZED,
        COMPTROLLER_MISMATCH,
        INSUFFICIENT_SHORTFALL,
        INSUFFICIENT_LIQUIDITY,
        INVALID_CLOSE_FACTOR,
        INVALID_COLLATERAL_FACTOR,
        INVALID_LIQUIDATION_INCENTIVE,
        MARKET_NOT_ENTERED, // no longer possible
        MARKET_NOT_LISTED,
        MARKET_ALREADY_LISTED,
        MATH_ERROR,
        NONZERO_BORROW_BALANCE,
        PRICE_ERROR,
        REJECTION,
        SNAPSHOT_ERROR,
        TOO_MANY_ASSETS,
        TOO_MUCH_REPAY
    }

    enum FailureInfo {
        ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
        ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK,
        EXIT_MARKET_BALANCE_OWED,
        EXIT_MARKET_REJECTION,
        SET_CLOSE_FACTOR_OWNER_CHECK,
        SET_CLOSE_FACTOR_VALIDATION,
        SET_COLLATERAL_FACTOR_OWNER_CHECK,
        SET_COLLATERAL_FACTOR_NO_EXISTS,
        SET_COLLATERAL_FACTOR_VALIDATION,
        SET_COLLATERAL_FACTOR_WITHOUT_PRICE,
        SET_IMPLEMENTATION_OWNER_CHECK,
        SET_LIQUIDATION_INCENTIVE_OWNER_CHECK,
        SET_LIQUIDATION_INCENTIVE_VALIDATION,
        SET_MAX_ASSETS_OWNER_CHECK,
        SET_PENDING_ADMIN_OWNER_CHECK,
        SET_PENDING_IMPLEMENTATION_OWNER_CHECK,
        SET_PRICE_ORACLE_OWNER_CHECK,
        SUPPORT_MARKET_EXISTS,
        SUPPORT_MARKET_OWNER_CHECK,
        SET_PAUSE_GUARDIAN_OWNER_CHECK
    }

    /**
     * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
     * contract-specific code that enables us to report opaque error codes from upgradeable contracts.
     **/
    event Failure(uint256 error, uint256 info, uint256 detail);

    /**
     * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
     */
    function fail(Error err, FailureInfo info) internal returns (uint256) {
        emit Failure(uint256(err), uint256(info), 0);

        return uint256(err);
    }

    /**
     * @dev use this when reporting an opaque error from an upgradeable collaborator contract
     */
    function failOpaque(
        Error err,
        FailureInfo info,
        uint256 opaqueError
    ) internal returns (uint256) {
        emit Failure(uint256(err), uint256(info), opaqueError);

        return uint256(err);
    }
}

contract TokenErrorReporter {
    enum Error {
        NO_ERROR,
        UNAUTHORIZED,
        BAD_INPUT,
        COMPTROLLER_REJECTION,
        COMPTROLLER_CALCULATION_ERROR,
        INTEREST_RATE_MODEL_ERROR,
        INVALID_ACCOUNT_PAIR,
        INVALID_CLOSE_AMOUNT_REQUESTED,
        INVALID_COLLATERAL_FACTOR,
        MATH_ERROR,
        MARKET_NOT_FRESH,
        MARKET_NOT_LISTED,
        TOKEN_INSUFFICIENT_ALLOWANCE,
        TOKEN_INSUFFICIENT_BALANCE,
        TOKEN_INSUFFICIENT_CASH,
        TOKEN_TRANSFER_IN_FAILED,
        TOKEN_TRANSFER_OUT_FAILED
    }

    /*
     * Note: FailureInfo (but not Error) is kept in alphabetical order
     *       This is because FailureInfo grows significantly faster, and
     *       the order of Error has some meaning, while the order of FailureInfo
     *       is entirely arbitrary.
     */
    enum FailureInfo {
        ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
        ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED,
        BORROW_ACCRUE_INTEREST_FAILED,
        BORROW_CASH_NOT_AVAILABLE,
        BORROW_FRESHNESS_CHECK,
        BORROW_MARKET_NOT_LISTED,
        BORROW_COMPTROLLER_REJECTION,
        LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED,
        LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED,
        LIQUIDATE_COLLATERAL_FRESHNESS_CHECK,
        LIQUIDATE_COMPTROLLER_REJECTION,
        LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED,
        LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX,
        LIQUIDATE_CLOSE_AMOUNT_IS_ZERO,
        LIQUIDATE_FRESHNESS_CHECK,
        LIQUIDATE_LIQUIDATOR_IS_BORROWER,
        LIQUIDATE_REPAY_BORROW_FRESH_FAILED,
        LIQUIDATE_SEIZE_COMPTROLLER_REJECTION,
        LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER,
        LIQUIDATE_SEIZE_TOO_MUCH,
        MINT_ACCRUE_INTEREST_FAILED,
        MINT_COMPTROLLER_REJECTION,
        MINT_FRESHNESS_CHECK,
        MINT_TRANSFER_IN_FAILED,
        MINT_TRANSFER_IN_NOT_POSSIBLE,
        REDEEM_ACCRUE_INTEREST_FAILED,
        REDEEM_COMPTROLLER_REJECTION,
        REDEEM_FRESHNESS_CHECK,
        REDEEM_TRANSFER_OUT_NOT_POSSIBLE,
        REDUCE_RESERVES_ACCRUE_INTEREST_FAILED,
        REDUCE_RESERVES_ADMIN_CHECK,
        REDUCE_RESERVES_CASH_NOT_AVAILABLE,
        REDUCE_RESERVES_FRESH_CHECK,
        REDUCE_RESERVES_VALIDATION,
        REPAY_BEHALF_ACCRUE_INTEREST_FAILED,
        REPAY_BORROW_ACCRUE_INTEREST_FAILED,
        REPAY_BORROW_COMPTROLLER_REJECTION,
        REPAY_BORROW_FRESHNESS_CHECK,
        REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE,
        SET_COLLATERAL_FACTOR_OWNER_CHECK,
        SET_COLLATERAL_FACTOR_VALIDATION,
        SET_COMPTROLLER_OWNER_CHECK,
        SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED,
        SET_INTEREST_RATE_MODEL_FRESH_CHECK,
        SET_INTEREST_RATE_MODEL_OWNER_CHECK,
        SET_MAX_ASSETS_OWNER_CHECK,
        SET_ORACLE_MARKET_NOT_LISTED,
        SET_PENDING_ADMIN_OWNER_CHECK,
        SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED,
        SET_RESERVE_FACTOR_ADMIN_CHECK,
        SET_RESERVE_FACTOR_FRESH_CHECK,
        SET_RESERVE_FACTOR_BOUNDS_CHECK,
        TRANSFER_COMPTROLLER_REJECTION,
        TRANSFER_NOT_ALLOWED,
        ADD_RESERVES_ACCRUE_INTEREST_FAILED,
        ADD_RESERVES_FRESH_CHECK,
        ADD_RESERVES_TRANSFER_IN_NOT_POSSIBLE
    }

    /**
     * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
     * contract-specific code that enables us to report opaque error codes from upgradeable contracts.
     **/
    event Failure(uint256 error, uint256 info, uint256 detail);

    /**
     * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
     */
    function fail(Error err, FailureInfo info) internal returns (uint256) {
        emit Failure(uint256(err), uint256(info), 0);

        return uint256(err);
    }

    /**
     * @dev use this when reporting an opaque error from an upgradeable collaborator contract
     */
    function failOpaque(
        Error err,
        FailureInfo info,
        uint256 opaqueError
    ) internal returns (uint256) {
        emit Failure(uint256(err), uint256(info), opaqueError);

        return uint256(err);
    }
}

File 14 of 20 : Exponential.sol
pragma solidity ^0.5.16;

import "./CarefulMath.sol";

/**
 * @title Exponential module for storing fixed-precision decimals
 * @author Compound
 * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.
 *         Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:
 *         `Exp({mantissa: 5100000000000000000})`.
 */
contract Exponential is CarefulMath {
    uint256 constant expScale = 1e18;
    uint256 constant doubleScale = 1e36;
    uint256 constant halfExpScale = expScale / 2;
    uint256 constant mantissaOne = expScale;

    struct Exp {
        uint256 mantissa;
    }

    struct Double {
        uint256 mantissa;
    }

    /**
     * @dev Creates an exponential from numerator and denominator values.
     *      Note: Returns an error if (`num` * 10e18) > MAX_INT,
     *            or if `denom` is zero.
     */
    function getExp(uint256 num, uint256 denom) internal pure returns (MathError, Exp memory) {
        (MathError err0, uint256 scaledNumerator) = mulUInt(num, expScale);
        if (err0 != MathError.NO_ERROR) {
            return (err0, Exp({mantissa: 0}));
        }

        (MathError err1, uint256 rational) = divUInt(scaledNumerator, denom);
        if (err1 != MathError.NO_ERROR) {
            return (err1, Exp({mantissa: 0}));
        }

        return (MathError.NO_ERROR, Exp({mantissa: rational}));
    }

    /**
     * @dev Adds two exponentials, returning a new exponential.
     */
    function addExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
        (MathError error, uint256 result) = addUInt(a.mantissa, b.mantissa);

        return (error, Exp({mantissa: result}));
    }

    /**
     * @dev Subtracts two exponentials, returning a new exponential.
     */
    function subExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
        (MathError error, uint256 result) = subUInt(a.mantissa, b.mantissa);

        return (error, Exp({mantissa: result}));
    }

    /**
     * @dev Multiply an Exp by a scalar, returning a new Exp.
     */
    function mulScalar(Exp memory a, uint256 scalar) internal pure returns (MathError, Exp memory) {
        (MathError err0, uint256 scaledMantissa) = mulUInt(a.mantissa, scalar);
        if (err0 != MathError.NO_ERROR) {
            return (err0, Exp({mantissa: 0}));
        }

        return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa}));
    }

    /**
     * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
     */
    function mulScalarTruncate(Exp memory a, uint256 scalar) internal pure returns (MathError, uint256) {
        (MathError err, Exp memory product) = mulScalar(a, scalar);
        if (err != MathError.NO_ERROR) {
            return (err, 0);
        }

        return (MathError.NO_ERROR, truncate(product));
    }

    /**
     * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
     */
    function mulScalarTruncateAddUInt(
        Exp memory a,
        uint256 scalar,
        uint256 addend
    ) internal pure returns (MathError, uint256) {
        (MathError err, Exp memory product) = mulScalar(a, scalar);
        if (err != MathError.NO_ERROR) {
            return (err, 0);
        }

        return addUInt(truncate(product), addend);
    }

    /**
     * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
     */
    function mul_ScalarTruncate(Exp memory a, uint256 scalar) internal pure returns (uint256) {
        Exp memory product = mul_(a, scalar);
        return truncate(product);
    }

    /**
     * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
     */
    function mul_ScalarTruncateAddUInt(
        Exp memory a,
        uint256 scalar,
        uint256 addend
    ) internal pure returns (uint256) {
        Exp memory product = mul_(a, scalar);
        return add_(truncate(product), addend);
    }

    /**
     * @dev Divide an Exp by a scalar, returning a new Exp.
     */
    function divScalar(Exp memory a, uint256 scalar) internal pure returns (MathError, Exp memory) {
        (MathError err0, uint256 descaledMantissa) = divUInt(a.mantissa, scalar);
        if (err0 != MathError.NO_ERROR) {
            return (err0, Exp({mantissa: 0}));
        }

        return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa}));
    }

    /**
     * @dev Divide a scalar by an Exp, returning a new Exp.
     */
    function divScalarByExp(uint256 scalar, Exp memory divisor) internal pure returns (MathError, Exp memory) {
        /*
          We are doing this as:
          getExp(mulUInt(expScale, scalar), divisor.mantissa)

          How it works:
          Exp = a / b;
          Scalar = s;
          `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`
        */
        (MathError err0, uint256 numerator) = mulUInt(expScale, scalar);
        if (err0 != MathError.NO_ERROR) {
            return (err0, Exp({mantissa: 0}));
        }
        return getExp(numerator, divisor.mantissa);
    }

    /**
     * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.
     */
    function divScalarByExpTruncate(uint256 scalar, Exp memory divisor) internal pure returns (MathError, uint256) {
        (MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor);
        if (err != MathError.NO_ERROR) {
            return (err, 0);
        }

        return (MathError.NO_ERROR, truncate(fraction));
    }

    /**
     * @dev Divide a scalar by an Exp, returning a new Exp.
     */
    function div_ScalarByExp(uint256 scalar, Exp memory divisor) internal pure returns (Exp memory) {
        /*
          We are doing this as:
          getExp(mulUInt(expScale, scalar), divisor.mantissa)

          How it works:
          Exp = a / b;
          Scalar = s;
          `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`
        */
        uint256 numerator = mul_(expScale, scalar);
        return Exp({mantissa: div_(numerator, divisor)});
    }

    /**
     * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.
     */
    function div_ScalarByExpTruncate(uint256 scalar, Exp memory divisor) internal pure returns (uint256) {
        Exp memory fraction = div_ScalarByExp(scalar, divisor);
        return truncate(fraction);
    }

    /**
     * @dev Multiplies two exponentials, returning a new exponential.
     */
    function mulExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
        (MathError err0, uint256 doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa);
        if (err0 != MathError.NO_ERROR) {
            return (err0, Exp({mantissa: 0}));
        }

        // We add half the scale before dividing so that we get rounding instead of truncation.
        //  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717
        // Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18.
        (MathError err1, uint256 doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct);
        if (err1 != MathError.NO_ERROR) {
            return (err1, Exp({mantissa: 0}));
        }

        (MathError err2, uint256 product) = divUInt(doubleScaledProductWithHalfScale, expScale);
        // The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero.
        assert(err2 == MathError.NO_ERROR);

        return (MathError.NO_ERROR, Exp({mantissa: product}));
    }

    /**
     * @dev Multiplies two exponentials given their mantissas, returning a new exponential.
     */
    function mulExp(uint256 a, uint256 b) internal pure returns (MathError, Exp memory) {
        return mulExp(Exp({mantissa: a}), Exp({mantissa: b}));
    }

    /**
     * @dev Multiplies three exponentials, returning a new exponential.
     */
    function mulExp3(
        Exp memory a,
        Exp memory b,
        Exp memory c
    ) internal pure returns (MathError, Exp memory) {
        (MathError err, Exp memory ab) = mulExp(a, b);
        if (err != MathError.NO_ERROR) {
            return (err, ab);
        }
        return mulExp(ab, c);
    }

    /**
     * @dev Divides two exponentials, returning a new exponential.
     *     (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b,
     *  which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa)
     */
    function divExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
        return getExp(a.mantissa, b.mantissa);
    }

    /**
     * @dev Truncates the given exp to a whole number value.
     *      For example, truncate(Exp{mantissa: 15 * expScale}) = 15
     */
    function truncate(Exp memory exp) internal pure returns (uint256) {
        // Note: We are not using careful math here as we're performing a division that cannot fail
        return exp.mantissa / expScale;
    }

    /**
     * @dev Checks if first Exp is less than second Exp.
     */
    function lessThanExp(Exp memory left, Exp memory right) internal pure returns (bool) {
        return left.mantissa < right.mantissa;
    }

    /**
     * @dev Checks if left Exp <= right Exp.
     */
    function lessThanOrEqualExp(Exp memory left, Exp memory right) internal pure returns (bool) {
        return left.mantissa <= right.mantissa;
    }

    /**
     * @dev returns true if Exp is exactly zero
     */
    function isZeroExp(Exp memory value) internal pure returns (bool) {
        return value.mantissa == 0;
    }

    function safe224(uint256 n, string memory errorMessage) internal pure returns (uint224) {
        require(n < 2**224, errorMessage);
        return uint224(n);
    }

    function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) {
        require(n < 2**32, errorMessage);
        return uint32(n);
    }

    function add_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
        return Exp({mantissa: add_(a.mantissa, b.mantissa)});
    }

    function add_(Double memory a, Double memory b) internal pure returns (Double memory) {
        return Double({mantissa: add_(a.mantissa, b.mantissa)});
    }

    function add_(uint256 a, uint256 b) internal pure returns (uint256) {
        return add_(a, b, "addition overflow");
    }

    function add_(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, errorMessage);
        return c;
    }

    function sub_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
        return Exp({mantissa: sub_(a.mantissa, b.mantissa)});
    }

    function sub_(Double memory a, Double memory b) internal pure returns (Double memory) {
        return Double({mantissa: sub_(a.mantissa, b.mantissa)});
    }

    function sub_(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub_(a, b, "subtraction underflow");
    }

    function sub_(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        return a - b;
    }

    function mul_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
        return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale});
    }

    function mul_(Exp memory a, uint256 b) internal pure returns (Exp memory) {
        return Exp({mantissa: mul_(a.mantissa, b)});
    }

    function mul_(uint256 a, Exp memory b) internal pure returns (uint256) {
        return mul_(a, b.mantissa) / expScale;
    }

    function mul_(Double memory a, Double memory b) internal pure returns (Double memory) {
        return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale});
    }

    function mul_(Double memory a, uint256 b) internal pure returns (Double memory) {
        return Double({mantissa: mul_(a.mantissa, b)});
    }

    function mul_(uint256 a, Double memory b) internal pure returns (uint256) {
        return mul_(a, b.mantissa) / doubleScale;
    }

    function mul_(uint256 a, uint256 b) internal pure returns (uint256) {
        return mul_(a, b, "multiplication overflow");
    }

    function mul_(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        if (a == 0 || b == 0) {
            return 0;
        }
        uint256 c = a * b;
        require(c / a == b, errorMessage);
        return c;
    }

    function div_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
        return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)});
    }

    function div_(Exp memory a, uint256 b) internal pure returns (Exp memory) {
        return Exp({mantissa: div_(a.mantissa, b)});
    }

    function div_(uint256 a, Exp memory b) internal pure returns (uint256) {
        return div_(mul_(a, expScale), b.mantissa);
    }

    function div_(Double memory a, Double memory b) internal pure returns (Double memory) {
        return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)});
    }

    function div_(Double memory a, uint256 b) internal pure returns (Double memory) {
        return Double({mantissa: div_(a.mantissa, b)});
    }

    function div_(uint256 a, Double memory b) internal pure returns (uint256) {
        return div_(mul_(a, doubleScale), b.mantissa);
    }

    function div_(uint256 a, uint256 b) internal pure returns (uint256) {
        return div_(a, b, "divide by zero");
    }

    function div_(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a / b;
    }

    function fraction(uint256 a, uint256 b) internal pure returns (Double memory) {
        return Double({mantissa: div_(mul_(a, doubleScale), b)});
    }

    // implementation from https://github.com/Uniswap/uniswap-lib/commit/99f3f28770640ba1bb1ff460ac7c5292fb8291a0
    // original implementation: https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMath64x64.sol#L687
    function sqrt(uint256 x) internal pure returns (uint256) {
        if (x == 0) return 0;
        uint256 xx = x;
        uint256 r = 1;

        if (xx >= 0x100000000000000000000000000000000) {
            xx >>= 128;
            r <<= 64;
        }
        if (xx >= 0x10000000000000000) {
            xx >>= 64;
            r <<= 32;
        }
        if (xx >= 0x100000000) {
            xx >>= 32;
            r <<= 16;
        }
        if (xx >= 0x10000) {
            xx >>= 16;
            r <<= 8;
        }
        if (xx >= 0x100) {
            xx >>= 8;
            r <<= 4;
        }
        if (xx >= 0x10) {
            xx >>= 4;
            r <<= 2;
        }
        if (xx >= 0x8) {
            r <<= 1;
        }

        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1; // Seven iterations should be enough
        uint256 r1 = x / r;
        return (r < r1 ? r : r1);
    }
}

File 15 of 20 : FlashloanLender.sol
pragma solidity ^0.5.16;
import "./CCollateralCapErc20.sol";
import "./CErc20.sol";
import "./Comptroller.sol";

interface CERC20Interface {
    function underlying() external view returns (address);
}

contract FlashloanLender is ERC3156FlashLenderInterface {
    /**
     * @notice underlying token to cToken mapping
     */
    mapping(address => address) public underlyingToCToken;

    /**
     * @notice C.R.E.A.M. comptroller address
     */
    address public comptroller;

    address public owner;

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(msg.sender == owner, "not owner");
        _;
    }

    constructor(address _comptroller, address _owner) public {
        comptroller = _comptroller;
        owner = _owner;
        initialiseUnderlyingMapping();
    }

    function maxFlashLoan(address token) external view returns (uint256) {
        address cToken = underlyingToCToken[token];
        uint256 amount = 0;
        if (cToken != address(0)) {
            amount = CCollateralCapErc20(cToken).maxFlashLoan();
        }
        return amount;
    }

    function flashFee(address token, uint256 amount) external view returns (uint256) {
        address cToken = underlyingToCToken[token];
        require(cToken != address(0), "cannot find cToken of this underlying in the mapping");
        return CCollateralCapErc20(cToken).flashFee(amount);
    }

    function flashLoan(
        ERC3156FlashBorrowerInterface receiver,
        address token,
        uint256 amount,
        bytes calldata data
    ) external returns (bool) {
        address cToken = underlyingToCToken[token];
        require(cToken != address(0), "cannot find cToken of this underlying in the mapping");
        return CCollateralCapErc20(cToken).flashLoan(receiver, msg.sender, amount, data);
    }

    function updateUnderlyingMapping(CToken[] calldata cTokens) external onlyOwner returns (bool) {
        uint256 cTokenLength = cTokens.length;
        for (uint256 i = 0; i < cTokenLength; i++) {
            CToken cToken = cTokens[i];
            address underlying = CErc20(address(cToken)).underlying();
            underlyingToCToken[underlying] = address(cToken);
        }
        return true;
    }

    function removeUnderlyingMapping(CToken[] calldata cTokens) external onlyOwner returns (bool) {
        uint256 cTokenLength = cTokens.length;
        for (uint256 i = 0; i < cTokenLength; i++) {
            CToken cToken = cTokens[i];
            address underlying = CErc20(address(cToken)).underlying();
            underlyingToCToken[underlying] = address(0);
        }
        return true;
    }

    /*** Internal Functions ***/

    function compareStrings(string memory a, string memory b) private pure returns (bool) {
        return (keccak256(abi.encodePacked((a))) == keccak256(abi.encodePacked((b))));
    }

    function initialiseUnderlyingMapping() internal {
        CToken[] memory cTokens = Comptroller(comptroller).getAllMarkets();
        uint256 cTokenLength = cTokens.length;
        for (uint256 i = 0; i < cTokenLength; i++) {
            CToken cToken = cTokens[i];
            if (compareStrings(cToken.symbol(), "crETH")) {
                continue;
            }
            address underlying = CErc20(address(cToken)).underlying();
            underlyingToCToken[underlying] = address(cToken);
        }
    }
}

File 16 of 20 : Comp.sol
pragma solidity ^0.5.16;

contract Comp {
    /// @notice EIP-20 token name for this token
    string public constant name = "Cream";

    /// @notice EIP-20 token symbol for this token
    string public constant symbol = "CREAM";

    /// @notice EIP-20 token decimals for this token
    uint8 public constant decimals = 18;

    /// @notice Total number of tokens in circulation
    uint256 public constant totalSupply = 9000000e18; // 9 million Comp

    /// @notice Allowance amounts on behalf of others
    mapping(address => mapping(address => uint96)) internal allowances;

    /// @notice Official record of token balances for each account
    mapping(address => uint96) internal balances;

    /// @notice A record of each accounts delegate
    mapping(address => address) public delegates;

    /// @notice A checkpoint for marking number of votes from a given block
    struct Checkpoint {
        uint32 fromBlock;
        uint96 votes;
    }

    /// @notice A record of votes checkpoints for each account, by index
    mapping(address => mapping(uint32 => Checkpoint)) public checkpoints;

    /// @notice The number of checkpoints for each account
    mapping(address => uint32) public numCheckpoints;

    /// @notice The EIP-712 typehash for the contract's domain
    bytes32 public constant DOMAIN_TYPEHASH =
        keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");

    /// @notice The EIP-712 typehash for the delegation struct used by the contract
    bytes32 public constant DELEGATION_TYPEHASH =
        keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");

    /// @notice A record of states for signing / validating signatures
    mapping(address => uint256) public nonces;

    /// @notice An event thats emitted when an account changes its delegate
    event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);

    /// @notice An event thats emitted when a delegate account's vote balance changes
    event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);

    /// @notice The standard EIP-20 transfer event
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /// @notice The standard EIP-20 approval event
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /**
     * @notice Construct a new Comp token
     * @param account The initial account to grant all the tokens
     */
    constructor(address account) public {
        balances[account] = uint96(totalSupply);
        emit Transfer(address(0), account, totalSupply);
    }

    /**
     * @notice Get the number of tokens `spender` is approved to spend on behalf of `account`
     * @param account The address of the account holding the funds
     * @param spender The address of the account spending the funds
     * @return The number of tokens approved
     */
    function allowance(address account, address spender) external view returns (uint256) {
        return allowances[account][spender];
    }

    /**
     * @notice Approve `spender` to transfer up to `amount` from `src`
     * @dev This will overwrite the approval amount for `spender`
     *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
     * @param spender The address of the account which may transfer tokens
     * @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
     * @return Whether or not the approval succeeded
     */
    function approve(address spender, uint256 rawAmount) external returns (bool) {
        uint96 amount;
        if (rawAmount == uint256(-1)) {
            amount = uint96(-1);
        } else {
            amount = safe96(rawAmount, "Comp::approve: amount exceeds 96 bits");
        }

        allowances[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);
        return true;
    }

    /**
     * @notice Get the number of tokens held by the `account`
     * @param account The address of the account to get the balance of
     * @return The number of tokens held
     */
    function balanceOf(address account) external view returns (uint256) {
        return balances[account];
    }

    /**
     * @notice Transfer `amount` tokens from `msg.sender` to `dst`
     * @param dst The address of the destination account
     * @param rawAmount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transfer(address dst, uint256 rawAmount) external returns (bool) {
        uint96 amount = safe96(rawAmount, "Comp::transfer: amount exceeds 96 bits");
        _transferTokens(msg.sender, dst, amount);
        return true;
    }

    /**
     * @notice Transfer `amount` tokens from `src` to `dst`
     * @param src The address of the source account
     * @param dst The address of the destination account
     * @param rawAmount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transferFrom(
        address src,
        address dst,
        uint256 rawAmount
    ) external returns (bool) {
        address spender = msg.sender;
        uint96 spenderAllowance = allowances[src][spender];
        uint96 amount = safe96(rawAmount, "Comp::approve: amount exceeds 96 bits");

        if (spender != src && spenderAllowance != uint96(-1)) {
            uint96 newAllowance = sub96(
                spenderAllowance,
                amount,
                "Comp::transferFrom: transfer amount exceeds spender allowance"
            );
            allowances[src][spender] = newAllowance;

            emit Approval(src, spender, newAllowance);
        }

        _transferTokens(src, dst, amount);
        return true;
    }

    /**
     * @notice Delegate votes from `msg.sender` to `delegatee`
     * @param delegatee The address to delegate votes to
     */
    function delegate(address delegatee) public {
        return _delegate(msg.sender, delegatee);
    }

    /**
     * @notice Delegates votes from signatory to `delegatee`
     * @param delegatee The address to delegate votes to
     * @param nonce The contract state required to match the signature
     * @param expiry The time at which to expire the signature
     * @param v The recovery byte of the signature
     * @param r Half of the ECDSA signature pair
     * @param s Half of the ECDSA signature pair
     */
    function delegateBySig(
        address delegatee,
        uint256 nonce,
        uint256 expiry,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public {
        bytes32 domainSeparator = keccak256(
            abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), getChainId(), address(this))
        );
        bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry));
        bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
        address signatory = ecrecover(digest, v, r, s);
        require(signatory != address(0), "Comp::delegateBySig: invalid signature");
        require(nonce == nonces[signatory]++, "Comp::delegateBySig: invalid nonce");
        require(now <= expiry, "Comp::delegateBySig: signature expired");
        return _delegate(signatory, delegatee);
    }

    /**
     * @notice Gets the current votes balance for `account`
     * @param account The address to get votes balance
     * @return The number of current votes for `account`
     */
    function getCurrentVotes(address account) external view returns (uint96) {
        uint32 nCheckpoints = numCheckpoints[account];
        return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
    }

    /**
     * @notice Determine the prior number of votes for an account as of a block number
     * @dev Block number must be a finalized block or else this function will revert to prevent misinformation.
     * @param account The address of the account to check
     * @param blockNumber The block number to get the vote balance at
     * @return The number of votes the account had as of the given block
     */
    function getPriorVotes(address account, uint256 blockNumber) public view returns (uint96) {
        require(blockNumber < block.number, "Comp::getPriorVotes: not yet determined");

        uint32 nCheckpoints = numCheckpoints[account];
        if (nCheckpoints == 0) {
            return 0;
        }

        // First check most recent balance
        if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
            return checkpoints[account][nCheckpoints - 1].votes;
        }

        // Next check implicit zero balance
        if (checkpoints[account][0].fromBlock > blockNumber) {
            return 0;
        }

        uint32 lower = 0;
        uint32 upper = nCheckpoints - 1;
        while (upper > lower) {
            uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
            Checkpoint memory cp = checkpoints[account][center];
            if (cp.fromBlock == blockNumber) {
                return cp.votes;
            } else if (cp.fromBlock < blockNumber) {
                lower = center;
            } else {
                upper = center - 1;
            }
        }
        return checkpoints[account][lower].votes;
    }

    function _delegate(address delegator, address delegatee) internal {
        address currentDelegate = delegates[delegator];
        uint96 delegatorBalance = balances[delegator];
        delegates[delegator] = delegatee;

        emit DelegateChanged(delegator, currentDelegate, delegatee);

        _moveDelegates(currentDelegate, delegatee, delegatorBalance);
    }

    function _transferTokens(
        address src,
        address dst,
        uint96 amount
    ) internal {
        require(src != address(0), "Comp::_transferTokens: cannot transfer from the zero address");
        require(dst != address(0), "Comp::_transferTokens: cannot transfer to the zero address");

        balances[src] = sub96(balances[src], amount, "Comp::_transferTokens: transfer amount exceeds balance");
        balances[dst] = add96(balances[dst], amount, "Comp::_transferTokens: transfer amount overflows");
        emit Transfer(src, dst, amount);

        _moveDelegates(delegates[src], delegates[dst], amount);
    }

    function _moveDelegates(
        address srcRep,
        address dstRep,
        uint96 amount
    ) internal {
        if (srcRep != dstRep && amount > 0) {
            if (srcRep != address(0)) {
                uint32 srcRepNum = numCheckpoints[srcRep];
                uint96 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
                uint96 srcRepNew = sub96(srcRepOld, amount, "Comp::_moveVotes: vote amount underflows");
                _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
            }

            if (dstRep != address(0)) {
                uint32 dstRepNum = numCheckpoints[dstRep];
                uint96 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
                uint96 dstRepNew = add96(dstRepOld, amount, "Comp::_moveVotes: vote amount overflows");
                _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
            }
        }
    }

    function _writeCheckpoint(
        address delegatee,
        uint32 nCheckpoints,
        uint96 oldVotes,
        uint96 newVotes
    ) internal {
        uint32 blockNumber = safe32(block.number, "Comp::_writeCheckpoint: block number exceeds 32 bits");

        if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
            checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
        } else {
            checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
            numCheckpoints[delegatee] = nCheckpoints + 1;
        }

        emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
    }

    function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) {
        require(n < 2**32, errorMessage);
        return uint32(n);
    }

    function safe96(uint256 n, string memory errorMessage) internal pure returns (uint96) {
        require(n < 2**96, errorMessage);
        return uint96(n);
    }

    function add96(
        uint96 a,
        uint96 b,
        string memory errorMessage
    ) internal pure returns (uint96) {
        uint96 c = a + b;
        require(c >= a, errorMessage);
        return c;
    }

    function sub96(
        uint96 a,
        uint96 b,
        string memory errorMessage
    ) internal pure returns (uint96) {
        require(b <= a, errorMessage);
        return a - b;
    }

    function getChainId() internal pure returns (uint256) {
        uint256 chainId;
        assembly {
            chainId := chainid()
        }
        return chainId;
    }
}

File 17 of 20 : InterestRateModel.sol
pragma solidity ^0.5.16;

/**
 * @title Compound's InterestRateModel Interface
 * @author Compound
 */
contract InterestRateModel {
    /// @notice Indicator that this is an InterestRateModel contract (for inspection)
    bool public constant isInterestRateModel = true;

    /**
     * @notice Calculates the current borrow interest rate per block
     * @param cash The total amount of cash the market has
     * @param borrows The total amount of borrows the market has outstanding
     * @param reserves The total amnount of reserves the market has
     * @return The borrow rate per block (as a percentage, and scaled by 1e18)
     */
    function getBorrowRate(
        uint256 cash,
        uint256 borrows,
        uint256 reserves
    ) external view returns (uint256);

    /**
     * @notice Calculates the current supply interest rate per block
     * @param cash The total amount of cash the market has
     * @param borrows The total amount of borrows the market has outstanding
     * @param reserves The total amnount of reserves the market has
     * @param reserveFactorMantissa The current reserve factor the market has
     * @return The supply rate per block (as a percentage, and scaled by 1e18)
     */
    function getSupplyRate(
        uint256 cash,
        uint256 borrows,
        uint256 reserves,
        uint256 reserveFactorMantissa
    ) external view returns (uint256);
}

File 18 of 20 : LiquidityMiningInterface.sol
pragma solidity ^0.5.16;

contract LiquidityMiningInterface {
    function comptroller() external view returns (address);

    function updateSupplyIndex(address cToken, address[] calldata accounts) external;

    function updateBorrowIndex(address cToken, address[] calldata accounts) external;
}

File 19 of 20 : PriceOracle.sol
pragma solidity ^0.5.16;

import "../CToken.sol";

contract PriceOracle {
    /**
     * @notice Get the underlying price of a cToken asset
     * @param cToken The cToken to get the underlying price of
     * @return The underlying asset price mantissa (scaled by 1e18).
     *  Zero means the price is unavailable.
     */
    function getUnderlyingPrice(CToken cToken) external view returns (uint256);
}

File 20 of 20 : Unitroller.sol
pragma solidity ^0.5.16;

import "./ErrorReporter.sol";
import "./ComptrollerStorage.sol";

/**
 * @title ComptrollerCore
 * @dev Storage for the comptroller is at this address, while execution is delegated to the `comptrollerImplementation`.
 * CTokens should reference this contract as their comptroller.
 */
contract Unitroller is UnitrollerAdminStorage, ComptrollerErrorReporter {
    /**
     * @notice Emitted when pendingComptrollerImplementation is changed
     */
    event NewPendingImplementation(address oldPendingImplementation, address newPendingImplementation);

    /**
     * @notice Emitted when pendingComptrollerImplementation is accepted, which means comptroller implementation is updated
     */
    event NewImplementation(address oldImplementation, address newImplementation);

    /**
     * @notice Emitted when pendingAdmin is changed
     */
    event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);

    /**
     * @notice Emitted when pendingAdmin is accepted, which means admin is updated
     */
    event NewAdmin(address oldAdmin, address newAdmin);

    constructor() public {
        // Set admin to caller
        admin = msg.sender;
    }

    /*** Admin Functions ***/
    function _setPendingImplementation(address newPendingImplementation) public returns (uint256) {
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_OWNER_CHECK);
        }

        address oldPendingImplementation = pendingComptrollerImplementation;

        pendingComptrollerImplementation = newPendingImplementation;

        emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Accepts new implementation of comptroller. msg.sender must be pendingImplementation
     * @dev Admin function for new implementation to accept it's role as implementation
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _acceptImplementation() public returns (uint256) {
        // Check caller is pendingImplementation and pendingImplementation ≠ address(0)
        if (msg.sender != pendingComptrollerImplementation || pendingComptrollerImplementation == address(0)) {
            return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK);
        }

        // Save current values for inclusion in log
        address oldImplementation = comptrollerImplementation;
        address oldPendingImplementation = pendingComptrollerImplementation;

        comptrollerImplementation = pendingComptrollerImplementation;

        pendingComptrollerImplementation = address(0);

        emit NewImplementation(oldImplementation, comptrollerImplementation);
        emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
     * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
     * @param newPendingAdmin New pending admin.
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setPendingAdmin(address newPendingAdmin) public returns (uint256) {
        // Check caller = admin
        if (msg.sender != admin) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);
        }

        // Save current value, if any, for inclusion in log
        address oldPendingAdmin = pendingAdmin;

        // Store pendingAdmin with value newPendingAdmin
        pendingAdmin = newPendingAdmin;

        // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
        emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
     * @dev Admin function for pending admin to accept role and update admin
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _acceptAdmin() public returns (uint256) {
        // Check caller is pendingAdmin and pendingAdmin ≠ address(0)
        if (msg.sender != pendingAdmin || msg.sender == address(0)) {
            return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);
        }

        // Save current values for inclusion in log
        address oldAdmin = admin;
        address oldPendingAdmin = pendingAdmin;

        // Store admin with value pendingAdmin
        admin = pendingAdmin;

        // Clear the pending value
        pendingAdmin = address(0);

        emit NewAdmin(oldAdmin, admin);
        emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);

        return uint256(Error.NO_ERROR);
    }

    /**
     * @notice This view function is for aligning with EIP-1967 interface
     * @return The comptroller implementation
     */
    function implementation() public view returns (address) {
        return comptrollerImplementation;
    }

    /**
     * @dev Delegates execution to an implementation contract.
     * It returns to the external caller whatever the implementation returns
     * or forwards reverts.
     */
    function() external payable {
        // delegate all other functions to current implementation
        (bool success, ) = comptrollerImplementation.delegatecall(msg.data);

        assembly {
            let free_mem_ptr := mload(0x40)
            returndatacopy(free_mem_ptr, 0, returndatasize)

            switch success
            case 0 {
                revert(free_mem_ptr, returndatasize)
            }
            default {
                return(free_mem_ptr, returndatasize)
            }
        }
    }
}

Settings
{
  "evmVersion": "istanbul",
  "libraries": {},
  "metadata": {
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": [],
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  }
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"_comptroller","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"constant":true,"inputs":[],"name":"comptroller","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"flashFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"contract ERC3156FlashBorrowerInterface","name":"receiver","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"flashLoan","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"maxFlashLoan","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"contract CToken[]","name":"cTokens","type":"address[]"}],"name":"removeUnderlyingMapping","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"underlyingToCToken","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"contract CToken[]","name":"cTokens","type":"address[]"}],"name":"updateUnderlyingMapping","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"}]

60806040523480156200001157600080fd5b5060405162000cfd38038062000cfd833981810160405260408110156200003757600080fd5b508051602090910151600180546001600160a01b038085166001600160a01b0319928316179092556002805492841692909116919091179055620000836001600160e01b036200008b16565b5050620004c9565b6001546040805163b0772d0b60e01b815290516060926001600160a01b03169163b0772d0b916004808301926000929190829003018186803b158015620000d157600080fd5b505afa158015620000e6573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405260208110156200011057600080fd5b81019080805160405193929190846401000000008211156200013157600080fd5b9083019060208201858111156200014757600080fd5b82518660208202830111640100000000821117156200016557600080fd5b82525081516020918201928201910280838360005b83811015620001945781810151838201526020016200017a565b50505050919091016040525050825192935060009150505b81811015620003d9576000838281518110620001c457fe5b6020026020010151905062000328816001600160a01b03166395d89b416040518163ffffffff1660e01b815260040160006040518083038186803b1580156200020c57600080fd5b505afa15801562000221573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405260208110156200024b57600080fd5b81019080805160405193929190846401000000008211156200026c57600080fd5b9083019060208201858111156200028257600080fd5b82516401000000008111828201881017156200029d57600080fd5b82525081516020918201929091019080838360005b83811015620002cc578181015183820152602001620002b2565b50505050905090810190601f168015620002fa5780820380516001836020036101000a031916815260200191505b506040818101905260058152640c6e48aa8960db1b60208201529250506001600160e01b03620003de169050565b15620003355750620003d0565b6000816001600160a01b0316636f307dc36040518163ffffffff1660e01b815260040160206040518083038186803b1580156200037157600080fd5b505afa15801562000386573d6000803e3d6000fd5b505050506040513d60208110156200039d57600080fd5b50516001600160a01b0390811660009081526020819052604090208054919093166001600160a01b031990911617909155505b600101620001ac565b505050565b6000816040516020018082805190602001908083835b60208310620004155780518252601f199092019160209182019101620003f4565b6001836020036101000a03801982511681845116808217855250505050505090500191505060405160208183030381529060405280519060200120836040516020018082805190602001908083835b60208310620004855780518252601f19909201916020918201910162000464565b6001836020036101000a0380198251168184511680821785525050505050509050019150506040516020818303038152906040528051906020012014905092915050565b61082480620004d96000396000f3fe608060405234801561001057600080fd5b50600436106100885760003560e01c8063d473e09a1161005b578063d473e09a14610195578063d97af4f9146101bb578063d9d98ce41461022b578063df3e99351461025757610088565b80635cffe9de1461008d5780635fe3b56714610131578063613255ab146101555780638da5cb5b1461018d575b600080fd5b61011d600480360360808110156100a357600080fd5b6001600160a01b038235811692602081013590911691604082013591908101906080810160608201356401000000008111156100de57600080fd5b8201836020820111156100f057600080fd5b8035906020019184600183028401116401000000008311171561011257600080fd5b5090925090506102c7565b604080519115158252519081900360200190f35b6101396103ea565b604080516001600160a01b039092168252519081900360200190f35b61017b6004803603602081101561016b57600080fd5b50356001600160a01b03166103f9565b60408051918252519081900360200190f35b61013961048c565b610139600480360360208110156101ab57600080fd5b50356001600160a01b031661049b565b61011d600480360360208110156101d157600080fd5b8101906020810181356401000000008111156101ec57600080fd5b8201836020820111156101fe57600080fd5b8035906020019184602083028401116401000000008311171561022057600080fd5b5090925090506104b6565b61017b6004803603604081101561024157600080fd5b506001600160a01b0381351690602001356105da565b61011d6004803603602081101561026d57600080fd5b81019060208101813564010000000081111561028857600080fd5b82018360208201111561029a57600080fd5b803590602001918460208302840111640100000000831117156102bc57600080fd5b5090925090506106ab565b6001600160a01b03808516600090815260208190526040812054909116806103205760405162461bcd60e51b81526004018080602001828103825260348152602001806107bc6034913960400191505060405180910390fd5b604051632e7ff4ef60e11b81526001600160a01b03888116600483019081523360248401819052604484018990526080606485019081526084850188905292851693635cffe9de938c938b928b928b929160a401848480828437600081840152601f19601f8201169050808301925050509650505050505050602060405180830381600087803b1580156103b357600080fd5b505af11580156103c7573d6000803e3d6000fd5b505050506040513d60208110156103dd57600080fd5b5051979650505050505050565b6001546001600160a01b031681565b6001600160a01b0380821660009081526020819052604081205490911681811561048557816001600160a01b031663242c127c6040518163ffffffff1660e01b815260040160206040518083038186803b15801561045657600080fd5b505afa15801561046a573d6000803e3d6000fd5b505050506040513d602081101561048057600080fd5b505190505b9392505050565b6002546001600160a01b031681565b6000602081905290815260409020546001600160a01b031681565b6002546000906001600160a01b03163314610504576040805162461bcd60e51b81526020600482015260096024820152683737ba1037bbb732b960b91b604482015290519081900360640190fd5b8160005b818110156105cf57600085858381811061051e57fe5b905060200201356001600160a01b031690506000816001600160a01b0316636f307dc36040518163ffffffff1660e01b815260040160206040518083038186803b15801561056b57600080fd5b505afa15801561057f573d6000803e3d6000fd5b505050506040513d602081101561059557600080fd5b50516001600160a01b0390811660009081526020819052604090208054919093166001600160a01b03199091161790915550600101610508565b506001949350505050565b6001600160a01b03808316600090815260208190526040812054909116806106335760405162461bcd60e51b81526004018080602001828103825260348152602001806107bc6034913960400191505060405180910390fd5b806001600160a01b031663a7af467a846040518263ffffffff1660e01b81526004018082815260200191505060206040518083038186803b15801561067757600080fd5b505afa15801561068b573d6000803e3d6000fd5b505050506040513d60208110156106a157600080fd5b5051949350505050565b6002546000906001600160a01b031633146106f9576040805162461bcd60e51b81526020600482015260096024820152683737ba1037bbb732b960b91b604482015290519081900360640190fd5b8160005b818110156105cf57600085858381811061071357fe5b905060200201356001600160a01b031690506000816001600160a01b0316636f307dc36040518163ffffffff1660e01b815260040160206040518083038186803b15801561076057600080fd5b505afa158015610774573d6000803e3d6000fd5b505050506040513d602081101561078a57600080fd5b50516001600160a01b0316600090815260208190526040902080546001600160a01b031916905550506001016106fd56fe63616e6e6f742066696e642063546f6b656e206f66207468697320756e6465726c79696e6720696e20746865206d617070696e67a265627a7a72315820414d1983eba7f0f943e86d8ec9201abf82e53f709dfdae2f800e769cb3821b5164736f6c634300051100320000000000000000000000002ee80614ccbc5e28654324a66a396458fa5cd7cc000000000000000000000000197939c1ca20c2b506d6811d8b6cdb3394471074

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000002ee80614ccbc5e28654324a66a396458fa5cd7cc000000000000000000000000197939c1ca20c2b506d6811d8b6cdb3394471074

-----Decoded View---------------
Arg [0] : _comptroller (address): 0x2ee80614ccbc5e28654324a66a396458fa5cd7cc
Arg [1] : _owner (address): 0x197939c1ca20c2b506d6811d8b6cdb3394471074

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000002ee80614ccbc5e28654324a66a396458fa5cd7cc
Arg [1] : 000000000000000000000000197939c1ca20c2b506d6811d8b6cdb3394471074


Block Transaction Gas Used Reward
Age Block Fee Address BC Fee Address Voting Power Jailed Incoming
Block Uncle Number Difficulty Gas Used Reward
Loading
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.