Contract
0x4edc5406fbd68a0863a72de411e656a3c70cb341
2
Contract Overview
Balance:
0 AVAX
AVAX Value:
$0.00
My Name Tag:
Not Available, login to update
[ Download CSV Export ]
Contract Source Code Verified (Exact Match)
Contract Name:
Revealer
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 1000000 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/ERC721.sol) pragma solidity ^0.8.0; import "./IERC721.sol"; import "./IERC721Receiver.sol"; import "./extensions/IERC721Metadata.sol"; import "../../utils/Address.sol"; import "../../utils/Context.sol"; import "../../utils/Strings.sol"; import "../../utils/introspection/ERC165.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ contract ERC721 is Context, ERC165, IERC721, IERC721Metadata { using Address for address; using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to owner address mapping(uint256 => address) private _owners; // Mapping owner address to token count mapping(address => uint256) private _balances; // Mapping from token ID to approved address mapping(uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual override returns (uint256) { require(owner != address(0), "ERC721: address zero is not a valid owner"); return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { address owner = _ownerOf(tokenId); require(owner != address(0), "ERC721: invalid token ID"); return owner; } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { _requireMinted(tokenId); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual override { address owner = ERC721.ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require( _msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not token owner or approved for all" ); _approve(to, tokenId); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { _requireMinted(tokenId); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom( address from, address to, uint256 tokenId ) public virtual override { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved"); _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public virtual override { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory data ) public virtual override { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved"); _safeTransfer(from, to, tokenId, data); } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * `data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer( address from, address to, uint256 tokenId, bytes memory data ) internal virtual { _transfer(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist */ function _ownerOf(uint256 tokenId) internal view virtual returns (address) { return _owners[tokenId]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), * and stop existing when they are burned (`_burn`). */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _ownerOf(tokenId) != address(0); } /** * @dev Returns whether `spender` is allowed to manage `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) { address owner = ERC721.ownerOf(tokenId); return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender); } /** * @dev Safely mints `tokenId` and transfers it to `to`. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal virtual { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint( address to, uint256 tokenId, bytes memory data ) internal virtual { _mint(to, tokenId); require( _checkOnERC721Received(address(0), to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer" ); } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal virtual { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _beforeTokenTransfer(address(0), to, tokenId, 1); // Check that tokenId was not minted by `_beforeTokenTransfer` hook require(!_exists(tokenId), "ERC721: token already minted"); unchecked { // Will not overflow unless all 2**256 token ids are minted to the same owner. // Given that tokens are minted one by one, it is impossible in practice that // this ever happens. Might change if we allow batch minting. // The ERC fails to describe this case. _balances[to] += 1; } _owners[tokenId] = to; emit Transfer(address(0), to, tokenId); _afterTokenTransfer(address(0), to, tokenId, 1); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * This is an internal function that does not check if the sender is authorized to operate on the token. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal virtual { address owner = ERC721.ownerOf(tokenId); _beforeTokenTransfer(owner, address(0), tokenId, 1); // Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook owner = ERC721.ownerOf(tokenId); // Clear approvals delete _tokenApprovals[tokenId]; unchecked { // Cannot overflow, as that would require more tokens to be burned/transferred // out than the owner initially received through minting and transferring in. _balances[owner] -= 1; } delete _owners[tokenId]; emit Transfer(owner, address(0), tokenId); _afterTokenTransfer(owner, address(0), tokenId, 1); } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer( address from, address to, uint256 tokenId ) internal virtual { require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner"); require(to != address(0), "ERC721: transfer to the zero address"); _beforeTokenTransfer(from, to, tokenId, 1); // Check that tokenId was not transferred by `_beforeTokenTransfer` hook require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner"); // Clear approvals from the previous owner delete _tokenApprovals[tokenId]; unchecked { // `_balances[from]` cannot overflow for the same reason as described in `_burn`: // `from`'s balance is the number of token held, which is at least one before the current // transfer. // `_balances[to]` could overflow in the conditions described in `_mint`. That would require // all 2**256 token ids to be minted, which in practice is impossible. _balances[from] -= 1; _balances[to] += 1; } _owners[tokenId] = to; emit Transfer(from, to, tokenId); _afterTokenTransfer(from, to, tokenId, 1); } /** * @dev Approve `to` to operate on `tokenId` * * Emits an {Approval} event. */ function _approve(address to, uint256 tokenId) internal virtual { _tokenApprovals[tokenId] = to; emit Approval(ERC721.ownerOf(tokenId), to, tokenId); } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll( address owner, address operator, bool approved ) internal virtual { require(owner != operator, "ERC721: approve to caller"); _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Reverts if the `tokenId` has not been minted yet. */ function _requireMinted(uint256 tokenId) internal view virtual { require(_exists(tokenId), "ERC721: invalid token ID"); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received( address from, address to, uint256 tokenId, bytes memory data ) private returns (bool) { if (to.isContract()) { try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) { return retval == IERC721Receiver.onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert("ERC721: transfer to non ERC721Receiver implementer"); } else { /// @solidity memory-safe-assembly assembly { revert(add(32, reason), mload(reason)) } } } } else { return true; } } /** * @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`. * - When `from` is zero, the tokens will be minted for `to`. * - When `to` is zero, ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * - `batchSize` is non-zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256, /* firstTokenId */ uint256 batchSize ) internal virtual { if (batchSize > 1) { if (from != address(0)) { _balances[from] -= batchSize; } if (to != address(0)) { _balances[to] += batchSize; } } } /** * @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`. * - When `from` is zero, the tokens were minted for `to`. * - When `to` is zero, ``from``'s tokens were burned. * - `from` and `to` are never both zero. * - `batchSize` is non-zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 firstTokenId, uint256 batchSize ) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** **************************************************************************** * @notice Interface for contracts using VRF randomness * ***************************************************************************** * @dev PURPOSE * * @dev Reggie the Random Oracle (not his real job) wants to provide randomness * @dev to Vera the verifier in such a way that Vera can be sure he's not * @dev making his output up to suit himself. Reggie provides Vera a public key * @dev to which he knows the secret key. Each time Vera provides a seed to * @dev Reggie, he gives back a value which is computed completely * @dev deterministically from the seed and the secret key. * * @dev Reggie provides a proof by which Vera can verify that the output was * @dev correctly computed once Reggie tells it to her, but without that proof, * @dev the output is indistinguishable to her from a uniform random sample * @dev from the output space. * * @dev The purpose of this contract is to make it easy for unrelated contracts * @dev to talk to Vera the verifier about the work Reggie is doing, to provide * @dev simple access to a verifiable source of randomness. It ensures 2 things: * @dev 1. The fulfillment came from the VRFCoordinator * @dev 2. The consumer contract implements fulfillRandomWords. * ***************************************************************************** * @dev USAGE * * @dev Calling contracts must inherit from VRFConsumerBase, and can * @dev initialize VRFConsumerBase's attributes in their constructor as * @dev shown: * * @dev contract VRFConsumer { * @dev constructor(<other arguments>, address _vrfCoordinator, address _link) * @dev VRFConsumerBase(_vrfCoordinator) public { * @dev <initialization with other arguments goes here> * @dev } * @dev } * * @dev The oracle will have given you an ID for the VRF keypair they have * @dev committed to (let's call it keyHash). Create subscription, fund it * @dev and your consumer contract as a consumer of it (see VRFCoordinatorInterface * @dev subscription management functions). * @dev Call requestRandomWords(keyHash, subId, minimumRequestConfirmations, * @dev callbackGasLimit, numWords), * @dev see (VRFCoordinatorInterface for a description of the arguments). * * @dev Once the VRFCoordinator has received and validated the oracle's response * @dev to your request, it will call your contract's fulfillRandomWords method. * * @dev The randomness argument to fulfillRandomWords is a set of random words * @dev generated from your requestId and the blockHash of the request. * * @dev If your contract could have concurrent requests open, you can use the * @dev requestId returned from requestRandomWords to track which response is associated * @dev with which randomness request. * @dev See "SECURITY CONSIDERATIONS" for principles to keep in mind, * @dev if your contract could have multiple requests in flight simultaneously. * * @dev Colliding `requestId`s are cryptographically impossible as long as seeds * @dev differ. * * ***************************************************************************** * @dev SECURITY CONSIDERATIONS * * @dev A method with the ability to call your fulfillRandomness method directly * @dev could spoof a VRF response with any random value, so it's critical that * @dev it cannot be directly called by anything other than this base contract * @dev (specifically, by the VRFConsumerBase.rawFulfillRandomness method). * * @dev For your users to trust that your contract's random behavior is free * @dev from malicious interference, it's best if you can write it so that all * @dev behaviors implied by a VRF response are executed *during* your * @dev fulfillRandomness method. If your contract must store the response (or * @dev anything derived from it) and use it later, you must ensure that any * @dev user-significant behavior which depends on that stored value cannot be * @dev manipulated by a subsequent VRF request. * * @dev Similarly, both miners and the VRF oracle itself have some influence * @dev over the order in which VRF responses appear on the blockchain, so if * @dev your contract could have multiple VRF requests in flight simultaneously, * @dev you must ensure that the order in which the VRF responses arrive cannot * @dev be used to manipulate your contract's user-significant behavior. * * @dev Since the block hash of the block which contains the requestRandomness * @dev call is mixed into the input to the VRF *last*, a sufficiently powerful * @dev miner could, in principle, fork the blockchain to evict the block * @dev containing the request, forcing the request to be included in a * @dev different block with a different hash, and therefore a different input * @dev to the VRF. However, such an attack would incur a substantial economic * @dev cost. This cost scales with the number of blocks the VRF oracle waits * @dev until it calls responds to a request. It is for this reason that * @dev that you can signal to an oracle you'd like them to wait longer before * @dev responding to the request (however this is not enforced in the contract * @dev and so remains effective only in the case of unmodified oracle software). */ abstract contract VRFConsumerBaseV2 { error OnlyCoordinatorCanFulfill(address have, address want); address private immutable vrfCoordinator; /** * @param _vrfCoordinator address of VRFCoordinator contract */ constructor(address _vrfCoordinator) { vrfCoordinator = _vrfCoordinator; } /** * @notice fulfillRandomness handles the VRF response. Your contract must * @notice implement it. See "SECURITY CONSIDERATIONS" above for important * @notice principles to keep in mind when implementing your fulfillRandomness * @notice method. * * @dev VRFConsumerBaseV2 expects its subcontracts to have a method with this * @dev signature, and will call it once it has verified the proof * @dev associated with the randomness. (It is triggered via a call to * @dev rawFulfillRandomness, below.) * * @param requestId The Id initially returned by requestRandomness * @param randomWords the VRF output expanded to the requested number of words */ function fulfillRandomWords(uint256 requestId, uint256[] memory randomWords) internal virtual; // rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF // proof. rawFulfillRandomness then calls fulfillRandomness, after validating // the origin of the call function rawFulfillRandomWords(uint256 requestId, uint256[] memory randomWords) external { if (msg.sender != vrfCoordinator) { revert OnlyCoordinatorCanFulfill(msg.sender, vrfCoordinator); } fulfillRandomWords(requestId, randomWords); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface VRFCoordinatorV2Interface { /** * @notice Get configuration relevant for making requests * @return minimumRequestConfirmations global min for request confirmations * @return maxGasLimit global max for request gas limit * @return s_provingKeyHashes list of registered key hashes */ function getRequestConfig() external view returns ( uint16, uint32, bytes32[] memory ); /** * @notice Request a set of random words. * @param keyHash - Corresponds to a particular oracle job which uses * that key for generating the VRF proof. Different keyHash's have different gas price * ceilings, so you can select a specific one to bound your maximum per request cost. * @param subId - The ID of the VRF subscription. Must be funded * with the minimum subscription balance required for the selected keyHash. * @param minimumRequestConfirmations - How many blocks you'd like the * oracle to wait before responding to the request. See SECURITY CONSIDERATIONS * for why you may want to request more. The acceptable range is * [minimumRequestBlockConfirmations, 200]. * @param callbackGasLimit - How much gas you'd like to receive in your * fulfillRandomWords callback. Note that gasleft() inside fulfillRandomWords * may be slightly less than this amount because of gas used calling the function * (argument decoding etc.), so you may need to request slightly more than you expect * to have inside fulfillRandomWords. The acceptable range is * [0, maxGasLimit] * @param numWords - The number of uint256 random values you'd like to receive * in your fulfillRandomWords callback. Note these numbers are expanded in a * secure way by the VRFCoordinator from a single random value supplied by the oracle. * @return requestId - A unique identifier of the request. Can be used to match * a request to a response in fulfillRandomWords. */ function requestRandomWords( bytes32 keyHash, uint64 subId, uint16 minimumRequestConfirmations, uint32 callbackGasLimit, uint32 numWords ) external returns (uint256 requestId); /** * @notice Create a VRF subscription. * @return subId - A unique subscription id. * @dev You can manage the consumer set dynamically with addConsumer/removeConsumer. * @dev Note to fund the subscription, use transferAndCall. For example * @dev LINKTOKEN.transferAndCall( * @dev address(COORDINATOR), * @dev amount, * @dev abi.encode(subId)); */ function createSubscription() external returns (uint64 subId); /** * @notice Get a VRF subscription. * @param subId - ID of the subscription * @return balance - LINK balance of the subscription in juels. * @return reqCount - number of requests for this subscription, determines fee tier. * @return owner - owner of the subscription. * @return consumers - list of consumer address which are able to use this subscription. */ function getSubscription(uint64 subId) external view returns ( uint96 balance, uint64 reqCount, address owner, address[] memory consumers ); /** * @notice Request subscription owner transfer. * @param subId - ID of the subscription * @param newOwner - proposed new owner of the subscription */ function requestSubscriptionOwnerTransfer(uint64 subId, address newOwner) external; /** * @notice Request subscription owner transfer. * @param subId - ID of the subscription * @dev will revert if original owner of subId has * not requested that msg.sender become the new owner. */ function acceptSubscriptionOwnerTransfer(uint64 subId) external; /** * @notice Add a consumer to a VRF subscription. * @param subId - ID of the subscription * @param consumer - New consumer which can use the subscription */ function addConsumer(uint64 subId, address consumer) external; /** * @notice Remove a consumer from a VRF subscription. * @param subId - ID of the subscription * @param consumer - Consumer to remove from the subscription */ function removeConsumer(uint64 subId, address consumer) external; /** * @notice Cancel a subscription * @param subId - ID of the subscription * @param to - Where to send the remaining LINK to */ function cancelSubscription(uint64 subId, address to) external; /* * @notice Check to see if there exists a request commitment consumers * for all consumers and keyhashes for a given sub. * @param subId - ID of the subscription * @return true if there exists at least one unfulfilled request for the subscription, false * otherwise. */ function pendingRequestExists(uint64 subId) external view returns (bool); }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.13; import "../lib/openzeppelin-contracts/contracts/access/Ownable.sol"; import "../lib/openzeppelin-contracts/contracts/token/ERC721/ERC721.sol"; contract APAsoulbound is Ownable, ERC721 { uint256 public TotalSupply; mapping(address => bool) public IsAdmin; ERC721 public immutable APA_CONTRACT; error TokenIsSoulbound(); error Unauthorized(); constructor(string memory name_, string memory symbol_, address _apaAddress) ERC721(name_, symbol_) Ownable() { APA_CONTRACT = ERC721(_apaAddress); } function setAdmin (address _adminAddress, bool _permission) external onlyOwner { IsAdmin[_adminAddress] = _permission; } function mint(uint _tokenID, address _recipent) external { if(!IsAdmin[msg.sender]) revert Unauthorized(); TotalSupply++; _mint(_recipent, _tokenID); } function batchMint(uint [] calldata _tokenIDS, address _recipent) external { if(!IsAdmin[msg.sender]) revert Unauthorized(); uint256 length = _tokenIDS.length; for (uint index ; index < length; ) { TotalSupply++; _mint(_recipent, _tokenIDS[index]); unchecked { ++index; } } } function _beforeTokenTransfer(address from, address to, uint256 tokenId, uint256 batchSize) internal override(ERC721){ if (from != address(0)) revert TokenIsSoulbound(); super._beforeTokenTransfer(from, to, tokenId, batchSize); } function tokenURI(uint256 tokenId) public view override returns (string memory) { return APA_CONTRACT.tokenURI(tokenId); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.13; import {MerkleProof} from "../lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol"; import {Ownable} from "../lib/openzeppelin-contracts/contracts/access/Ownable.sol"; import {ERC721} from "../lib/openzeppelin-contracts/contracts/token/ERC721/ERC721.sol"; import "../lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol"; import "./APAsoulbound.sol"; interface ApaRarity { function getRaritiesBatch(uint[] calldata tokenIds) external view returns (uint[] memory rarities); function getRarity(uint tokenId) external view returns (uint); } contract GoldenToken is Ownable, ERC721 { ERC721 public immutable APA_CONTRACT; ApaRarity public immutable APA_RARITY; APAsoulbound public immutable APA_SOULBOUND; uint256 public immutable COLLECTION_SIZE = 10000; uint256 immutable NULL_TOKENID = 10047; uint256 immutable FIESTA_TOKEN = 5; uint256 public immutable PUBLIC_MAX_MINTABLE_PER_TX = 5; bool public OpenApaBurning; bool public OpenWhitelistSale; uint256 public WhitelistSaleStartDate; uint256 public publicTicketSaleCost; uint256 public WhitelistPeriod; bytes32 public wlMerkleRoot; mapping(address => uint256) public wlRedeemed; uint256 public nextTokenId; address public exchanger; mapping(uint256 => uint256) public tokenRarity; string public baseURI; error Unauthorized(); error TicketsMintedOut(); error CostsNotCovered(); error PublicSaleHasntStarted(); error WhitelistSaleHasntStarted(); error AlreadyClaimed(); error MaxMintLimitExceeded(); event GoldenTokenClaimed(uint apaTokenId, uint rarity, uint goldenTokenId); constructor(string memory name_, string memory symbol_, address _apaAddress, address _apaRarityAddress, address _apaSoulboundAddress) ERC721(name_, symbol_) { APA_CONTRACT = ERC721(_apaAddress); WhitelistPeriod = 2 hours ; publicTicketSaleCost = 999; APA_RARITY = ApaRarity(_apaRarityAddress); APA_SOULBOUND = APAsoulbound(_apaSoulboundAddress); } modifier burnAllowed { require(OpenApaBurning); _; } function setExchanger(address newExchanger) public onlyOwner { exchanger = newExchanger; } function setBaseURI(string calldata _baseURI) external onlyOwner { baseURI = _baseURI; } function authorizeAPABurning(bool _allow) external onlyOwner { OpenApaBurning = _allow; } function authorizeWhitelistSale(bool _allow) external onlyOwner { OpenWhitelistSale = _allow; if (_allow == true) { OpenApaBurning = false; WhitelistSaleStartDate = block.timestamp; } } function setPublicTicketSaleCost(uint256 _ticketCost) external onlyOwner { publicTicketSaleCost = _ticketCost; } function setWhitelistPeriod(uint256 _period) external onlyOwner { WhitelistPeriod = _period; } function setWhitelistMerkleRoot (bytes32 _merkleRoot) external onlyOwner { wlMerkleRoot = _merkleRoot; } function withdraw (address payable recipient) external onlyOwner { recipient.transfer(address(this).balance); } function adminMint (address _recipient, uint256 _tokenType, uint256 _amount) external onlyOwner { if (_amount + nextTokenId > COLLECTION_SIZE) { revert TicketsMintedOut(); } for (uint index ; index < _amount; ) { _mint(_recipient, nextTokenId); tokenRarity[nextTokenId] = _tokenType; // fiesta unchecked { ++index; } emit GoldenTokenClaimed(NULL_TOKENID, _tokenType, nextTokenId++); } } function emergencyRescue(uint[] calldata tokenIds, address _target) external onlyOwner { uint len = tokenIds.length; for(uint i; i < len;) { APA_CONTRACT.transferFrom(address(this),_target,tokenIds[i]); unchecked { ++i; } } } function getGoldenTokenWithApaOnChainRarity(uint256 tokenId, bool _mintSoulbound) external burnAllowed{ APA_CONTRACT.transferFrom(msg.sender, address(this), tokenId); _mint(msg.sender, nextTokenId); if (_mintSoulbound) { APA_SOULBOUND.mint(tokenId, msg.sender); } uint rarity = APA_RARITY.getRarity(tokenId); tokenRarity[nextTokenId] = rarity; emit GoldenTokenClaimed(tokenId,rarity,nextTokenId++); } function getGoldenTokenWithApaOnChainRarityMultiple(uint256[] calldata tokenIds, bool _mintSoulbound) external burnAllowed { uint256 tokenIdLen = tokenIds.length; uint[] memory rarities = APA_RARITY.getRaritiesBatch(tokenIds); for (uint256 i; i < tokenIdLen;) { uint256 tokenId = tokenIds[i]; uint256 rarity = rarities[i]; APA_CONTRACT.transferFrom(msg.sender, address(this), tokenId); _mint(msg.sender, nextTokenId); tokenRarity[nextTokenId] = rarity; unchecked { ++i; } emit GoldenTokenClaimed(tokenId, rarity, nextTokenId++); } if (_mintSoulbound) { APA_SOULBOUND.batchMint(tokenIds, msg.sender); } } function getGoldenTokenWithAvaxPublic(uint256 _amount) external payable { if (_amount > PUBLIC_MAX_MINTABLE_PER_TX ) { revert MaxMintLimitExceeded(); } if (block.timestamp < WhitelistSaleStartDate + WhitelistPeriod) { revert PublicSaleHasntStarted(); } if (msg.value < publicTicketSaleCost * _amount) { revert CostsNotCovered(); } if (_amount + nextTokenId > COLLECTION_SIZE) { revert TicketsMintedOut(); } for (uint index ; index < _amount; ) { _mint(msg.sender, nextTokenId); tokenRarity[nextTokenId] = FIESTA_TOKEN; // fiesta unchecked { ++index; } emit GoldenTokenClaimed(NULL_TOKENID,FIESTA_TOKEN,nextTokenId++); } } function getGoldenTokenWithAvaxWhitelist(uint256 _amount, uint256 _totalGiven, bytes32[] calldata _proof ) external payable{ if (!OpenWhitelistSale) { revert WhitelistSaleHasntStarted(); } if (msg.value < publicTicketSaleCost * _amount) { revert CostsNotCovered(); } if (wlRedeemed[msg.sender] + _amount > _totalGiven) { revert AlreadyClaimed(); } if (_amount + nextTokenId > COLLECTION_SIZE) { revert Unauthorized(); } if (!MerkleProof.verify(_proof, wlMerkleRoot, keccak256(abi.encodePacked(msg.sender, _totalGiven)))) { revert Unauthorized(); } wlRedeemed[msg.sender] += _amount; for (uint index ; index < _amount; ) { _mint(msg.sender, nextTokenId); tokenRarity[nextTokenId] = FIESTA_TOKEN; // fiesta unchecked { ++index; } emit GoldenTokenClaimed(NULL_TOKENID,FIESTA_TOKEN,nextTokenId++); } } function exchange(uint256 tokenId) external { if (msg.sender != exchanger) revert Unauthorized(); _burn(tokenId); } function tokenURI(uint256 tokenId) public view override returns (string memory) { uint256 rarity = tokenRarity[tokenId]; return string(bytes.concat(bytes(baseURI), bytes(_toString(rarity)))); } function _toString(uint256 value) internal pure returns (string memory) { //slither-disable-next-line incorrect-equality if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; //slither-disable-next-line weak-prng buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.13; import "../lib/openzeppelin-contracts/contracts/access/Ownable.sol"; import "./GoldenToken.sol"; import "./VRFConsumer.sol"; interface OOPA { function reveal(address _to, uint256 _tokenId) external; function batchReval(address _to, uint256[] calldata _tokenIds) external; function setRevealer(address _revealerAddress) external; } contract Revealer is Ownable, VRFConsumerBaseV2,VRFConsumer { GoldenToken public immutable GOLDEN_TOKEN_CONTRACT; OOPA public immutable OOPA_CONTRACT; uint32 constant YACHT_TOKEN = 4; uint32 constant CABANA_TOKEN = 3; uint32 constant SURF_TOKEN = 2; uint32 constant CORAL_TOKEN = 1; uint32 constant BEACH_TOKEN = 0; uint32 constant public BEACH_TOKEN_TOTAL_AMOUNT = 3400; uint32 constant public CORAL_TOKEN_TOTAL_AMOUNT = 2280; uint32 constant public SURF_TOKEN_TOTAL_AMOUNT = 1600; uint32 constant public CABANA_TOKEN_TOTAL_AMOUNT = 700; uint32 constant public YACHT_TOKEN_TOTAL_AMOUNT = 20; uint32 constant BATCH_REVEAL_CAP = 10; uint32 constant public BEACH_OFFSET = 0; uint32 constant public CORAL_OFFSET = BEACH_OFFSET + BEACH_TOKEN_TOTAL_AMOUNT; uint32 constant public SURF_OFFSET = CORAL_OFFSET + CORAL_TOKEN_TOTAL_AMOUNT; uint32 constant public CABANA_OFFSET = SURF_OFFSET + SURF_TOKEN_TOTAL_AMOUNT; uint32 constant public YACHT_OFFSET = CABANA_OFFSET + CABANA_TOKEN_TOTAL_AMOUNT; struct tokenRanges { uint32 beachRange; uint32 coralRange; uint32 surfRange; uint32 cabanaRange; uint32 yachtRange; } tokenRanges goldeTokenRange = tokenRanges (BEACH_TOKEN_TOTAL_AMOUNT, CORAL_TOKEN_TOTAL_AMOUNT, SURF_TOKEN_TOTAL_AMOUNT, CABANA_TOKEN_TOTAL_AMOUNT, YACHT_TOKEN_TOTAL_AMOUNT ); bool allowReveal; uint256 revealed; struct Request { address userAddress; RevealTokenCount goldenTokenCount; } struct RevealTokenCount { uint32 beachCount; uint32 coralCount; uint32 surfCount; uint32 cabanaCount; uint32 yachtCount; uint32 totalCount; } mapping(uint256 => Request) private PlayerRequest; mapping (uint256 => uint256) private mintMap; error TooManyTokens(); error Unauthorized(); event TokenRevealed(uint256[] tokenTypes, address minter); constructor(address _goldenTokenAddress, address _oopaAddress, uint64 subscriptionId) VRFConsumer(subscriptionId) Ownable() { GOLDEN_TOKEN_CONTRACT = GoldenToken(_goldenTokenAddress); OOPA_CONTRACT = OOPA(_oopaAddress); } function adminAllowReveal (bool _allow) public onlyOwner { allowReveal = _allow; } function reveal (uint [] calldata _tokenIds) public { if (_tokenIds.length > BATCH_REVEAL_CAP ) { revert TooManyTokens(); } uint requestId = COORDINATOR.requestRandomWords( keyHash, s_subscriptionId, requestConfirmations, callbackGasLimit, numWords ); RevealTokenCount memory requestTokenCount; for (uint index = 0; index < _tokenIds.length; ) { if(GOLDEN_TOKEN_CONTRACT.ownerOf(_tokenIds[index]) != msg.sender) { revert Unauthorized(); } if (GOLDEN_TOKEN_CONTRACT.tokenRarity(_tokenIds[index]) == BEACH_TOKEN) { requestTokenCount.beachCount++; } else if (GOLDEN_TOKEN_CONTRACT.tokenRarity(_tokenIds[index]) == CORAL_TOKEN) { requestTokenCount.coralCount++; } else if (GOLDEN_TOKEN_CONTRACT.tokenRarity(_tokenIds[index]) == SURF_TOKEN) { requestTokenCount.surfCount++; } else if (GOLDEN_TOKEN_CONTRACT.tokenRarity(_tokenIds[index]) == CABANA_TOKEN) { requestTokenCount.cabanaCount++; } else { // YACHT_TOKEN requestTokenCount.yachtCount++; } requestTokenCount.totalCount++; GOLDEN_TOKEN_CONTRACT.exchange(_tokenIds[index]); unchecked { ++index; } } Request memory request = Request(msg.sender, requestTokenCount); PlayerRequest[requestId] = request; } function fulfillRandomWords(uint256 requestId , uint256[] memory randomWords) internal override { Request memory request = PlayerRequest[requestId]; uint256 randomNumber = randomWords[0]; uint256 [] memory tokenList = new uint256[](request.goldenTokenCount.totalCount); uint beachCount = request.goldenTokenCount.beachCount; uint coralCount = request.goldenTokenCount.coralCount; uint surfCount = request.goldenTokenCount.surfCount; uint cabanaCount = request.goldenTokenCount.cabanaCount; uint yachtCount = request.goldenTokenCount.yachtCount; uint offset; for ( uint index; index < beachCount; ) { randomNumber = randomNumber >> (8 * index); uint tokenId = getTokenId(BEACH_TOKEN,randomNumber); tokenList[index + offset] = tokenId; unchecked { ++index; } } offset += beachCount; for ( uint index; index < coralCount; ) { randomNumber = randomNumber >> (8 * index); uint tokenId = getTokenId(CORAL_TOKEN,randomNumber); tokenList[index + offset] = tokenId; unchecked { ++index; } } offset += coralCount; for ( uint index; index < surfCount; ) { randomNumber = randomNumber >> (8 * index); uint tokenId = getTokenId(SURF_TOKEN,randomNumber); tokenList[index + offset] = tokenId; unchecked { ++index; } } offset += surfCount; for ( uint index; index < cabanaCount; ) { randomNumber = randomNumber >> (8 * index); uint tokenId = getTokenId(CABANA_TOKEN,randomNumber); tokenList[index + offset] = tokenId; unchecked { ++index; } } offset += cabanaCount; for ( uint index; index < yachtCount; ) { randomNumber = randomNumber >> (8 * index); uint tokenId = getTokenId(YACHT_TOKEN,randomNumber); tokenList[index + offset] = tokenId; unchecked { ++index; } } OOPA_CONTRACT.batchReval(request.userAddress, tokenList); delete PlayerRequest[requestId]; emit TokenRevealed(tokenList, request.userAddress); } function getRangeAndOffsetForTokenRarity(uint256 rarity) internal returns (uint offset, uint range) { tokenRanges memory gtRange = goldeTokenRange; if (rarity == BEACH_TOKEN) { goldeTokenRange.beachRange--; return (BEACH_OFFSET, gtRange.beachRange); } else if(rarity == CORAL_TOKEN) { goldeTokenRange.coralRange--; return(CORAL_OFFSET, gtRange.coralRange); } else if(rarity == SURF_TOKEN) { goldeTokenRange.surfRange--; return(SURF_OFFSET, gtRange.surfRange); } else if(rarity == CABANA_TOKEN) { goldeTokenRange.cabanaRange--; return(CABANA_OFFSET, gtRange.cabanaRange); } else { goldeTokenRange.yachtRange--; return(YACHT_OFFSET, gtRange.yachtRange); } } function getTokenId(uint256 rarity, uint256 seed) internal returns (uint){ uint offset; uint range; (offset, range) = getRangeAndOffsetForTokenRarity(rarity); uint256 rndIndex = (seed % range) + offset; uint tokenNumber; if (mintMap[rndIndex] == 0) { tokenNumber = rndIndex; } else { tokenNumber = mintMap[rndIndex]; } uint lastIndex = offset + range - 1; uint lastElement = mintMap[lastIndex]; if(lastElement == 0) { mintMap[rndIndex] = lastIndex; } else { mintMap[rndIndex] = lastElement; delete mintMap[lastIndex]; } return tokenNumber; } }
// SPDX-License-Identifier: MIT // An example of a consumer contract that relies on a subscription for funding. pragma solidity ^0.8.17; import "@chainlink/contracts/src/v0.8/interfaces/VRFCoordinatorV2Interface.sol"; import "@chainlink/contracts/src/v0.8/VRFConsumerBaseV2.sol"; abstract contract VRFConsumer is VRFConsumerBaseV2 { VRFCoordinatorV2Interface immutable COORDINATOR; // Your subscription ID. uint64 immutable s_subscriptionId; // Rinkeby coordinator. For other networks, // see https://docs.chain.link/docs/vrf-contracts/#configurations //address constant vrfCoordinatorFuji_ = 0x78a0D48cC87Ea0444e521475FCbE84A799090D75; // TODO REPLACE WITH THE ACTUAL FUJI COORDINATOR //address constant vrfCoordinatorFuji_ = 0x2eD832Ba664535e5886b75D64C46EB9a228C2610 ; //address constant vrfCoordinatorAVAXMOCK = 0x82C5fA45Fc036c26C67d6c8FDb0e83c36dFc7aC9; address constant vrfCoordinatorAVAX = 0xd5D517aBE5cF79B7e95eC98dB0f0277788aFF634; // The gas lane to use, which specifies the maximum gas price to bump to. // For a list of available gas lanes on each network, // see https://docs.chain.link/docs/vrf-contracts/#configurations bytes32 constant keyHash = 0x83250c5584ffa93feb6ee082981c5ebe484c865196750b39835ad4f13780435d; // Depends on the number of requested values that you want sent to the // fulfillRandomWords() function. Storing each word costs about 20,000 gas, // so 100,000 is a safe default for this example contract. Test and adjust // this limit based on the network that you select, the size of the request, // and the processing of the callback request in the fulfillRandomWords() // function. uint32 constant callbackGasLimit = 1200000; // The default is 3, but you can set this higher. uint16 constant requestConfirmations = 1; // For this example, retrieve 2 random values in one request. // Cannot exceed VRFCoordinatorV2.MAX_NUM_WORDS. uint32 constant numWords = 1; event randomWordGenerated(uint256); constructor(uint64 subscriptionId) VRFConsumerBaseV2(vrfCoordinatorAVAX) { COORDINATOR = VRFCoordinatorV2Interface(vrfCoordinatorAVAX); s_subscriptionId = subscriptionId; } }
{ "remappings": [ "@chainlink/=node_modules/@chainlink/", "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/src/" ], "optimizer": { "enabled": true, "runs": 1000000 }, "metadata": { "bytecodeHash": "ipfs" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
[{"inputs":[{"internalType":"address","name":"_goldenTokenAddress","type":"address"},{"internalType":"address","name":"_oopaAddress","type":"address"},{"internalType":"uint64","name":"subscriptionId","type":"uint64"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"have","type":"address"},{"internalType":"address","name":"want","type":"address"}],"name":"OnlyCoordinatorCanFulfill","type":"error"},{"inputs":[],"name":"TooManyTokens","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"tokenTypes","type":"uint256[]"},{"indexed":false,"internalType":"address","name":"minter","type":"address"}],"name":"TokenRevealed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"","type":"uint256"}],"name":"randomWordGenerated","type":"event"},{"inputs":[],"name":"BEACH_OFFSET","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BEACH_TOKEN_TOTAL_AMOUNT","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CABANA_OFFSET","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CABANA_TOKEN_TOTAL_AMOUNT","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CORAL_OFFSET","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CORAL_TOKEN_TOTAL_AMOUNT","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GOLDEN_TOKEN_CONTRACT","outputs":[{"internalType":"contract GoldenToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OOPA_CONTRACT","outputs":[{"internalType":"contract OOPA","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SURF_OFFSET","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SURF_TOKEN_TOTAL_AMOUNT","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"YACHT_OFFSET","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"YACHT_TOKEN_TOTAL_AMOUNT","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"_allow","type":"bool"}],"name":"adminAllowReveal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"requestId","type":"uint256"},{"internalType":"uint256[]","name":"randomWords","type":"uint256[]"}],"name":"rawFulfillRandomWords","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"_tokenIds","type":"uint256[]"}],"name":"reveal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6101c0604052610d48610120526108e861014052610640610160526102bc6101805260146101a052600180546001600160a01b0319167014000002bc00000640000008e800000d481790553480156200005757600080fd5b5060405162001d4338038062001d438339810160408190526200007a916200014e565b8073d5d517abe5cf79b7e95ec98db0f0277788aff6346200009b33620000e1565b6001600160a01b0390811660805273d5d517abe5cf79b7e95ec98db0f0277788aff63460a0526001600160401b0390911660c05292831660e052501661010052620001a8565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80516001600160a01b03811681146200014957600080fd5b919050565b6000806000606084860312156200016457600080fd5b6200016f8462000131565b92506200017f6020850162000131565b60408501519092506001600160401b03811681146200019d57600080fd5b809150509250925092565b60805160a05160c05160e05161010051611b1e620002256000396000818161025b01526110c601526000818161014001528181610599015281816106b101528181610786015281816108510152818161091c0152610a1801526000610496015260006104d70152600081816102a801526103100152611b1e6000f3fe608060405234801561001057600080fd5b50600436106101365760003560e01c806384d83156116100b25780639ef2202411610081578063c8aeaf4c11610066578063c8aeaf4c1461024d578063d63db33314610256578063f2fde38b1461027d57600080fd5b80639ef2202414610231578063b93f208a1461023a57600080fd5b806384d83156146101fb5780638da5cb5b146102035780638e7e65cf1461022157806399f1b7d31461022957600080fd5b80633be31fe01161010957806356adc403116100ee57806356adc403146101d857806366d23226146101eb578063715018a6146101f357600080fd5b80633be31fe0146101c75780633e5313c8146101cf57600080fd5b80630229b9601461013b57806302794bc91461018c5780630c741c95146101a95780631fe543e3146101b2575b600080fd5b6101627f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b610194601481565b60405163ffffffff9091168152602001610183565b6101946102bc81565b6101c56101c03660046116e8565b610290565b005b610194600081565b61019461064081565b6101c56101e63660046117d0565b610350565b610194610389565b6101c56103b3565b6101946103c7565b60005473ffffffffffffffffffffffffffffffffffffffff16610162565b6101946103e7565b6101946103f7565b6101946108e881565b6101c56102483660046117f9565b610404565b610194610d4881565b6101627f000000000000000000000000000000000000000000000000000000000000000081565b6101c561028b366004611890565b610c6d565b3373ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001614610342576040517f1cf993f400000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001660248201526044015b60405180910390fd5b61034c8282610d24565b5050565b6103586111d3565b600280547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0016911515919091179055565b6106406108e861039c610d4860006118dc565b6103a691906118dc565b6103b091906118dc565b81565b6103bb6111d3565b6103c56000611254565b565b6102bc6106406108e86103dd610d4860006118dc565b61039c91906118dc565b6108e86103a6610d4860006118dc565b6103b0610d4860006118dc565b600a81111561043f576040517f748e67b200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f5d3b1d300000000000000000000000000000000000000000000000000000000081527f83250c5584ffa93feb6ee082981c5ebe484c865196750b39835ad4f13780435d600482015267ffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016602482015260016044820181905262124f80606483015260848201526000907f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1690635d3b1d309060a4016020604051808303816000875af1158015610535573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105599190611900565b6040805160c081018252600080825260208201819052918101829052606081018290526080810182905260a081018290529192505b83811015610ab157337f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16636352211e8787858181106105e5576105e5611919565b905060200201356040518263ffffffff1660e01b815260040161060a91815260200190565b602060405180830381865afa158015610627573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061064b9190611948565b73ffffffffffffffffffffffffffffffffffffffff1614610698576040517f82b4290000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600073ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001663afb0a3698787858181106106e8576106e8611919565b905060200201356040518263ffffffff1660e01b815260040161070d91815260200190565b602060405180830381865afa15801561072a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061074e9190611900565b0361076d5781518261075f82611965565b63ffffffff169052506109e8565b600173ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001663afb0a3698787858181106107bd576107bd611919565b905060200201356040518263ffffffff1660e01b81526004016107e291815260200190565b602060405180830381865afa1580156107ff573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108239190611900565b03610838576020820180519061075f82611965565b600273ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001663afb0a36987878581811061088857610888611919565b905060200201356040518263ffffffff1660e01b81526004016108ad91815260200190565b602060405180830381865afa1580156108ca573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108ee9190611900565b03610903576040820180519061075f82611965565b600373ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001663afb0a36987878581811061095357610953611919565b905060200201356040518263ffffffff1660e01b815260040161097891815260200190565b602060405180830381865afa158015610995573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109b99190611900565b036109ce576060820180519061075f82611965565b608082018051906109de82611965565b63ffffffff169052505b60a082018051906109f882611965565b63ffffffff1690525073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000166353556559868684818110610a4f57610a4f611919565b905060200201356040518263ffffffff1660e01b8152600401610a7491815260200190565b600060405180830381600087803b158015610a8e57600080fd5b505af1158015610aa2573d6000803e3d6000fd5b5050505080600101905061058e565b50604080518082018252338152602080820193845260009485526004815293829020905181547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff909116178155915180516001909301805494820151928201516060830151608084015160a09094015163ffffffff9687167fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000009098169790971764010000000095871695909502949094177fffffffffffffffffffffffffffffffff0000000000000000ffffffffffffffff1668010000000000000000918616919091027fffffffffffffffffffffffffffffffff00000000ffffffffffffffffffffffff16176c0100000000000000000000000093851693909302929092177fffffffffffffffff0000000000000000ffffffffffffffffffffffffffffffff16700100000000000000000000000000000000918416919091027fffffffffffffffff00000000ffffffffffffffffffffffffffffffffffffffff16177401000000000000000000000000000000000000000092909316919091029190911790555050565b610c756111d3565b73ffffffffffffffffffffffffffffffffffffffff8116610d18576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f64647265737300000000000000000000000000000000000000000000000000006064820152608401610339565b610d2181611254565b50565b600082815260046020908152604080832081518083018352815473ffffffffffffffffffffffffffffffffffffffff168152825160c08101845260019092015463ffffffff808216845264010000000082048116848701526801000000000000000082048116948401949094526c0100000000000000000000000081048416606084015270010000000000000000000000000000000081048416608084015274010000000000000000000000000000000000000000900490921660a082015291810191909152825190919083908290610dff57610dff611919565b602002602001015190506000826020015160a0015163ffffffff1667ffffffffffffffff811115610e3257610e326116b9565b604051908082528060200260200182016040528015610e5b578160200160208202803683370190505b506020808501518051918101516040820151606083015160809093015194955063ffffffff938416949184169390811692811691166000805b86811015610eea57610ea7816008611988565b9890981c976000610eb8818b6112c9565b90508089610ec6858561199f565b81518110610ed657610ed6611919565b602090810291909101015250600101610e94565b50610ef5868261199f565b905060005b85811015610f5157610f0d816008611988565b9890981c976000610f1f60018b6112c9565b90508089610f2d858561199f565b81518110610f3d57610f3d611919565b602090810291909101015250600101610efa565b50610f5c858261199f565b905060005b84811015610fb857610f74816008611988565b9890981c976000610f8660028b6112c9565b90508089610f94858561199f565b81518110610fa457610fa4611919565b602090810291909101015250600101610f61565b50610fc3848261199f565b905060005b8381101561101f57610fdb816008611988565b9890981c976000610fed60038b6112c9565b90508089610ffb858561199f565b8151811061100b5761100b611919565b602090810291909101015250600101610fc8565b5061102a838261199f565b905060005b8281101561108657611042816008611988565b9890981c97600061105460048b6112c9565b90508089611062858561199f565b8151811061107257611072611919565b60209081029190910101525060010161102f565b5088516040517ff0e5ccfd00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000169163f0e5ccfd916110fc91908b906004016119ed565b600060405180830381600087803b15801561111657600080fd5b505af115801561112a573d6000803e3d6000fd5b50505060008c8152600460205260409081902080547fffffffffffffffffffffffff000000000000000000000000000000000000000016815560010180547fffffffffffffffff0000000000000000000000000000000000000000000000001690558a5190517f4916c3603bdabfb46d63c938debed5a7b816f122217edf95fde591ad357ad8d792506111be918a91611a24565b60405180910390a15050505050505050505050565b60005473ffffffffffffffffffffffffffffffffffffffff1633146103c5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610339565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008060006112d785611393565b90925090506000826112e98387611a5c565b6112f3919061199f565b600081815260056020526040812054919250908103611313575080611324565b506000818152600560205260409020545b60006001611332858761199f565b61133c9190611a97565b60008181526005602052604081205491925081900361136b576000848152600560205260409020829055611384565b6000848152600560205260408082208390558382528120555b50909450505050505b92915050565b6040805160a08101825260015463ffffffff80821683526401000000008204811660208401526801000000000000000082048116938301939093526c010000000000000000000000008104831660608301527001000000000000000000000000000000009004909116608082015260009081908361144e576001805463ffffffff1690600061142183611aaa565b82546101009290920a63ffffffff8181021990931691831602179091559151600096921694509092505050565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff84016114d95760018054640100000000900463ffffffff1690600461149383611aaa565b91906101000a81548163ffffffff021916908363ffffffff16021790555050610d4860006114c191906118dc565b60209091015163ffffffff9182169591169350915050565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe8401611575576001805468010000000000000000900463ffffffff1690600861152283611aaa565b91906101000a81548163ffffffff021916908363ffffffff160217905550506108e8610d48600061155391906118dc565b61155d91906118dc565b60409091015163ffffffff9182169591169350915050565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd840161162257600180546c01000000000000000000000000900463ffffffff1690600c6115c283611aaa565b91906101000a81548163ffffffff021916908363ffffffff160217905550506106406108e8610d4860006115f691906118dc565b61160091906118dc565b61160a91906118dc565b60609091015163ffffffff9182169591169350915050565b60018054700100000000000000000000000000000000900463ffffffff1690601061164c83611aaa565b91906101000a81548163ffffffff021916908363ffffffff160217905550506102bc6106406108e8610d48600061168391906118dc565b61168d91906118dc565b61169791906118dc565b6116a191906118dc565b60809091015163ffffffff9182169591169350915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b600080604083850312156116fb57600080fd5b8235915060208084013567ffffffffffffffff8082111561171b57600080fd5b818601915086601f83011261172f57600080fd5b813581811115611741576117416116b9565b8060051b6040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0603f83011681018181108582111715611784576117846116b9565b6040529182528482019250838101850191898311156117a257600080fd5b938501935b828510156117c0578435845293850193928501926117a7565b8096505050505050509250929050565b6000602082840312156117e257600080fd5b813580151581146117f257600080fd5b9392505050565b6000806020838503121561180c57600080fd5b823567ffffffffffffffff8082111561182457600080fd5b818501915085601f83011261183857600080fd5b81358181111561184757600080fd5b8660208260051b850101111561185c57600080fd5b60209290920196919550909350505050565b73ffffffffffffffffffffffffffffffffffffffff81168114610d2157600080fd5b6000602082840312156118a257600080fd5b81356117f28161186e565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b63ffffffff8181168382160190808211156118f9576118f96118ad565b5092915050565b60006020828403121561191257600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60006020828403121561195a57600080fd5b81516117f28161186e565b600063ffffffff80831681810361197e5761197e6118ad565b6001019392505050565b808202811582820484141761138d5761138d6118ad565b8082018082111561138d5761138d6118ad565b600081518084526020808501945080840160005b838110156119e2578151875295820195908201906001016119c6565b509495945050505050565b73ffffffffffffffffffffffffffffffffffffffff83168152604060208201526000611a1c60408301846119b2565b949350505050565b604081526000611a3760408301856119b2565b905073ffffffffffffffffffffffffffffffffffffffff831660208301529392505050565b600082611a92577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500690565b8181038181111561138d5761138d6118ad565b600063ffffffff821680611ac057611ac06118ad565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff019291505056fea2646970667358221220dbb5852fcf4d60b548d73fd530fe25b612f532b377b143818d5c21f4c3ad6afd64736f6c6343000811003300000000000000000000000076d4415947b6bba3b37b3a93c3869dcef84e19e6000000000000000000000000b5d5b4cd4303d985d83c228644b9ed10930a81520000000000000000000000000000000000000000000000000000000000000071
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000076d4415947b6bba3b37b3a93c3869dcef84e19e6000000000000000000000000b5d5b4cd4303d985d83c228644b9ed10930a81520000000000000000000000000000000000000000000000000000000000000071
-----Decoded View---------------
Arg [0] : _goldenTokenAddress (address): 0x76d4415947b6bba3b37b3a93c3869dcef84e19e6
Arg [1] : _oopaAddress (address): 0xb5d5b4cd4303d985d83c228644b9ed10930a8152
Arg [2] : subscriptionId (uint64): 113
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 00000000000000000000000076d4415947b6bba3b37b3a93c3869dcef84e19e6
Arg [1] : 000000000000000000000000b5d5b4cd4303d985d83c228644b9ed10930a8152
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000071
Age | Block | Fee Address | BC Fee Address | Voting Power | Jailed | Incoming |
---|
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.